Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
Sci Adv. 2023 Feb 15;9(7):eade5732. doi: 10.1126/sciadv.ade5732.
The default mode network (DMN) is critical for self-referential mental processes, and its dysfunction is implicated in many neuropsychiatric disorders. However, the neurophysiological properties and task-based functional organization of the rodent DMN are poorly understood, limiting its translational utility. Here, we combine fiber photometry with functional magnetic resonance imaging (fMRI) and computational modeling to characterize dynamics of putative rat DMN nodes and their interactions with the anterior insular cortex (AI) of the salience network. Our analysis revealed neuronal activity changes in AI and DMN nodes preceding fMRI-derived DMN activations and cyclical transitions between brain network states. Furthermore, we demonstrate that salient oddball stimuli suppress the DMN and enhance AI neuronal activity and that the AI causally inhibits the retrosplenial cortex, a prominent DMN node. These findings elucidate the neurophysiological foundations of the rodent DMN, its spatiotemporal dynamical properties, and modulation by salient stimuli, paving the way for future translational studies.
默认模式网络(DMN)对于自我参照的心理过程至关重要,其功能障碍与许多神经精神疾病有关。然而,啮齿动物 DMN 的神经生理特性和基于任务的功能组织知之甚少,限制了其转化应用。在这里,我们结合光纤光度法和功能磁共振成像(fMRI)以及计算建模来描述假定的大鼠 DMN 节点的动力学及其与突显网络的前岛叶皮层(AI)的相互作用。我们的分析揭示了在 fMRI 衍生的 DMN 激活之前,AI 和 DMN 节点中的神经元活动变化,以及大脑网络状态之间的周期性转换。此外,我们证明了显著的异常刺激抑制 DMN 并增强 AI 神经元活动,并且 AI 因果地抑制了后扣带回皮层,这是 DMN 的一个突出节点。这些发现阐明了啮齿动物 DMN 的神经生理基础、其时空动态特性以及对显著刺激的调制,为未来的转化研究铺平了道路。