Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States.
J Chem Theory Comput. 2023 Mar 14;19(5):1602-1614. doi: 10.1021/acs.jctc.2c01139. Epub 2023 Feb 15.
Replica exchange with solute tempering (REST) is a highly effective variant of replica exchange for enhanced sampling in explicit solvent simulations of biomolecules. By scaling the Hamiltonian for a selected "solute" region of the system, REST effectively applies tempering only to the degrees of freedom of interest but not the rest of the system ("solvent"), allowing fewer replicas for covering the same temperature range. A key consideration of REST is how the solute-solvent interactions are scaled together with the solute-solute interactions. Here, we critically evaluate the performance of the latest REST2 protocol for sampling large-scale conformation fluctuations of intrinsically disordered proteins (IDPs). The results show that REST2 promotes artificial protein conformational collapse at high effective temperatures, which seems to be a designed feature originally to promote the sampling of reversible folding of small proteins. The collapse is particularly severe with larger IDPs, leading to replica segregation in the effective temperature space and hindering effective sampling of large-scale conformational changes. We propose that the scaling of the solute-solvent interactions can be treated as free parameters in REST, which can be tuned to control the solute conformational properties (e.g., chain expansion) at different effective temperatures and achieve more effective sampling. To this end, we derive a new REST3 protocol, where the strengths of the solute-solvent van der Waals interactions are recalibrated to reproduce the levels of protein chain expansion at high effective temperatures. The efficiency of REST3 is examined using two IDPs with nontrivial local and long-range structural features, including the p53 N-terminal domain and the kinase inducible transactivation domain of transcription factor CREB. The results suggest that REST3 leads to a much more efficient temperature random walk and improved sampling efficiency, which also further reduces the number of replicas required. Nonetheless, our analysis also reveals significant challenges of relying on tempering alone for sampling large-scale conformational fluctuations of disordered proteins. It is likely that more efficient sampling protocols will require incorporating more sophisticated Hamiltonian replica exchange schemes in addition to tempering.
复制交换与溶剂调温 (REST) 是一种用于增强生物分子显式溶剂模拟中采样的高效复制交换变体。通过对系统中选定的“溶剂”区域的哈密顿量进行缩放,REST 有效地仅对感兴趣的自由度施加调温,而不对系统的其余部分(“溶剂”)施加调温,从而在覆盖相同温度范围时需要更少的副本。REST 的一个关键考虑因素是如何与溶剂-溶剂相互作用一起缩放溶剂-溶剂相互作用。在这里,我们批判性地评估了最新的 REST2 协议在采样大规模无规卷曲蛋白质 (IDP) 构象波动方面的性能。结果表明,REST2 在高有效温度下促进了人工蛋白质构象崩溃,这似乎是最初为促进小蛋白质可逆折叠采样而设计的功能。这种崩溃在较大的 IDP 中尤为严重,导致有效温度空间中的副本分离,并阻碍了大规模构象变化的有效采样。我们提出可以将溶剂-溶剂相互作用的缩放视为 REST 中的自由参数,可以对其进行调整以控制不同有效温度下的溶剂构象特性(例如,链扩张),从而实现更有效的采样。为此,我们推导出了一种新的 REST3 协议,其中溶剂-溶剂范德华相互作用的强度进行重新校准,以在高有效温度下重现蛋白质链扩张的水平。使用包括 p53 N 端结构域和转录因子 CREB 的激酶诱导转录激活结构域在内的两个具有非平凡局部和远程结构特征的 IDP 来检验 REST3 的效率。结果表明,REST3 导致了更高效的温度随机漫步和改进的采样效率,这也进一步减少了所需的副本数量。尽管如此,我们的分析还揭示了仅依靠调温来采样无序蛋白质的大规模构象波动所面临的重大挑战。为了提高采样效率,可能需要除调温外还采用更复杂的哈密顿量复制交换方案。