Suppr超能文献

基于语义 FPN 和变形金刚的小尺寸和模糊肿瘤的癌症检测。

Cancer detection for small-size and ambiguous tumors based on semantic FPN and transformer.

机构信息

Department of Radiology, Qilu Hospital of Shandong University, Jinan, China.

School of Information Science and Engineering, Shandong Normal University, Jinan, China.

出版信息

PLoS One. 2023 Feb 16;18(2):e0275194. doi: 10.1371/journal.pone.0275194. eCollection 2023.

Abstract

Early detection of tumors has great significance for formative detection and determination of treatment plans. However, cancer detection remains a challenging task due to the interference of diseased tissue, the diversity of mass scales, and the ambiguity of tumor boundaries. It is difficult to extract the features of small-sized tumors and tumor boundaries, so semantic information of high-level feature maps is needed to enrich the regional features and local attention features of tumors. To solve the problems of small tumor objects and lack of contextual features, this paper proposes a novel Semantic Pyramid Network with a Transformer Self-attention, named SPN-TS, for tumor detection. Specifically, the paper first designs a new Feature Pyramid Network in the feature extraction stage. It changes the traditional cross-layer connection scheme and focuses on enriching the features of small-sized tumor regions. Then, we introduce the transformer attention mechanism into the framework to learn the local feature of tumor boundaries. Extensive experimental evaluations were performed on the publicly available CBIS-DDSM dataset, which is a Curated Breast Imaging Subset of the Digital Database for Screening Mammography. The proposed method achieved better performance in these models, achieving 93.26% sensitivity, 95.26% specificity, 96.78% accuracy, and 87.27% Matthews Correlation Coefficient (MCC) value, respectively. The method can achieve the best detection performance by effectively solving the difficulties of small objects and boundaries ambiguity. The algorithm can further promote the detection of other diseases in the future, and also provide algorithmic references for the general object detection field.

摘要

早期肿瘤检测对于早期发现和制定治疗方案具有重要意义。然而,由于病变组织的干扰、肿块尺度的多样性以及肿瘤边界的模糊性,癌症检测仍然是一项具有挑战性的任务。很难提取小肿瘤和肿瘤边界的特征,因此需要高级特征图的语义信息来丰富肿瘤的区域特征和局部注意特征。为了解决小肿瘤目标和上下文特征缺乏的问题,本文提出了一种用于肿瘤检测的新型带 Transformer 自注意力的语义金字塔网络(SPN-TS)。具体来说,本文首先在特征提取阶段设计了一个新的特征金字塔网络,它改变了传统的跨层连接方案,专注于丰富小肿瘤区域的特征。然后,我们将 Transformer 注意力机制引入到框架中,以学习肿瘤边界的局部特征。在公开的可用 CBIS-DDSM 数据集上进行了广泛的实验评估,该数据集是数字筛查乳房 X 光数据库的一个精选乳房成像子集。所提出的方法在这些模型中取得了更好的性能,分别达到了 93.26%的灵敏度、95.26%的特异性、96.78%的准确率和 87.27%的马修斯相关系数(MCC)值。该方法可以通过有效解决小目标和边界模糊的困难来实现最佳的检测性能。该算法可以进一步促进未来其他疾病的检测,也为一般目标检测领域提供了算法参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c024/9934456/5d79cb92a19c/pone.0275194.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验