Suppr超能文献

基于径向局部三元模式的乳腺钼靶图像乳腺肿块分类

Breast mass classification on mammograms using radial local ternary patterns.

作者信息

Muramatsu Chisako, Hara Takeshi, Endo Tokiko, Fujita Hiroshi

机构信息

Department of Intelligent Image Information, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan.

Department of Intelligent Image Information, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan.

出版信息

Comput Biol Med. 2016 May 1;72:43-53. doi: 10.1016/j.compbiomed.2016.03.007. Epub 2016 Mar 16.

Abstract

Textural features can be useful in differentiating between benign and malignant breast lesions on mammograms. Unlike previous computerized schemes, which relied largely on shape and margin features based on manual contours of masses, textural features can be determined from regions of interest (ROIs) without precise lesion segmentation. In this study, therefore, we investigated an ROI-based feature, namely, radial local ternary patterns (RLTP), which takes into account the direction of edge patterns with respect to the center of masses for classification of ROIs for benign and malignant masses. Using an artificial neural network (ANN), support vector machine (SVM) and random forest (RF) classifiers, the classification abilities of RLTP were compared with those of the regular local ternary patterns (LTP), rotation invariant uniform (RIU2) LTP, texture features based on the gray level co-occurrence matrix (GLCM), and wavelet features. The performance was evaluated with 376 ROIs including 181 malignant and 195 benign masses. The highest areas under the receiver operating characteristic curves among three classifiers were 0.90, 0.77, 0.78, 0.86, and 0.83 for RLTP, LTP, RIU2-LTP, GLCM, and wavelet features, respectively. The results indicate the usefulness of the proposed texture features for distinguishing between benign and malignant lesions and the superiority of the radial patterns compared with the conventional rotation invariant patterns.

摘要

纹理特征有助于在乳腺钼靶图像上区分良性和恶性乳腺病变。与以往主要依赖基于肿块手动轮廓的形状和边缘特征的计算机化方案不同,纹理特征可从感兴趣区域(ROI)确定,而无需精确的病变分割。因此,在本研究中,我们研究了一种基于ROI的特征,即径向局部三元模式(RLTP),它在对良性和恶性肿块的ROI进行分类时考虑了边缘模式相对于肿块中心的方向。使用人工神经网络(ANN)、支持向量机(SVM)和随机森林(RF)分类器,将RLTP的分类能力与常规局部三元模式(LTP)、旋转不变均匀(RIU2)LTP、基于灰度共生矩阵(GLCM)的纹理特征和小波特征的分类能力进行了比较。使用376个ROI(包括181个恶性肿块和195个良性肿块)对性能进行了评估。在三个分类器中,RLTP、LTP、RIU2-LTP、GLCM和小波特征在接收者操作特征曲线下的最高面积分别为0.90、0.77、0.78、0.86和0.83。结果表明所提出的纹理特征对于区分良性和恶性病变是有用的,并且与传统的旋转不变模式相比,径向模式具有优越性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验