Department of Civil Engineering, Michael Okpara University of Agriculture, Umudike, P. M. B. 7267, Umuahia, 440109, Abia State, Nigeria.
Department of Civil Engineering, Kampala International University, Kansanga, Uganda.
Sci Rep. 2023 Feb 16;13(1):2814. doi: 10.1038/s41598-023-30008-0.
This research study presents evaluation of aluminum waste-sisal fiber concrete's mechanical properties using adaptive neuro-fuzzy inference system (ANFIS) to achieve sustainable and eco-efficient engineering works. The deployment of artificial intelligence (AI) tools enables the optimization of building materials combined with admixtures to create durable engineering designs and eliminate the drawbacks encountered in trial-and-error or empirical method. The features of the cement-AW blend's setting time were evaluated in the laboratory and the results revealed that 0-50% of aluminum-waste (AW) inclusion increased both the initial and final setting time from 51-165 min and 585-795 min respectively. The blended concrete mix's flexural strength tests also show that 10% sisal-fiber (SF) substitution results in a maximum flexural strength of 11.6N/mm, while 50% replacement results in a minimum flexural strength of 4.11N/mm. Moreover, compressive strength test results show that SF and AW replacements of 0.08% and 0.1%, respectively, resulted in peak outcome of 24.97N/mm, while replacements of 0.5% and 0.45% resulted in a minimum response of 17.02N/mm. The ANFIS-model was developed using 91 datasets obtained from the experimental findings on varying replacements of cement and fine-aggregates with AW and SF respectively ranging from 0 to 50%. The ANFIS computation toolbox in MATLAB software was adopted for the model simulation, testing, training and validation of the response function using hybrid method of optimization and grid partition method of FIS at 100 Epochs. The compressive strength behavior is the target response, and the mixture variations of cement-AW and fine aggregates-SF combinations were used as the independent variables. The ANFIS-model performance assessment results obtained using loss function criteria demonstrates MAE of 0.1318, RMSE of 0.412, and coefficient of determination value of 99.57% which indicates a good relationship between the predicted and actual results while multiple linear regression (MLR) model presents a coefficient of determination of 82.46%.
本研究使用自适应神经模糊推理系统(ANFIS)评估铝废料-剑麻纤维混凝土的力学性能,以实现可持续和生态高效的工程工作。人工智能(AI)工具的应用使建筑材料与外加剂的优化相结合,创造出耐用的工程设计,并消除了试错或经验方法中遇到的缺点。在实验室评估了水泥-AW 混合物的凝结时间特性,结果表明,0-50%的铝废料(AW)含量分别将初始和最终凝结时间从 51-165 分钟和 585-795 分钟延长。混合混凝土配合比的弯曲强度测试也表明,10%剑麻纤维(SF)替代物可使弯曲强度达到最大值 11.6N/mm,而 50%替代物可使弯曲强度达到最小值 4.11N/mm。此外,抗压强度测试结果表明,SF 和 AW 分别以 0.08%和 0.1%的替代率替代时,会产生峰值为 24.97N/mm 的结果,而以 0.5%和 0.45%的替代率替代时,会产生最小值为 17.02N/mm 的结果。ANFIS 模型是使用从水泥和细骨料分别用 AW 和 SF 替代的实验结果中获得的 91 组数据集开发的,替代率从 0 到 50%不等。采用 MATLAB 软件中的 ANFIS 计算工具箱,采用优化混合方法和 FIS 网格分区方法,在 100 个Epoch 内对模型进行仿真、测试、训练和验证。抗压强度行为是目标响应,水泥-AW 和细骨料-SF 组合的混合物变化作为独立变量。使用损失函数标准评估得到的 ANFIS 模型性能评估结果表明,MAE 为 0.1318,RMSE 为 0.412,决定系数值为 99.57%,这表明预测结果与实际结果之间存在良好的关系,而多元线性回归(MLR)模型的决定系数为 82.46%。