Suppr超能文献

心电图筛查对年轻运动员与心源性猝死相关疾病的有效性的荟萃分析。

Meta-analysis on the Effectiveness of ECG Screening for Conditions Related to Sudden Cardiac Death in Young Athletes.

机构信息

Dell Medical School, The University of Texas at Austin, Austin, TX, USA.

Medical University of South Carolina, Charleston, SC, USA.

出版信息

Clin Pediatr (Phila). 2023 Oct;62(10):1158-1168. doi: 10.1177/00099228231152857. Epub 2023 Feb 16.

Abstract

Controversy exists over the use of electrocardiograms (ECGs) in sports pre-participation screening. We performed a meta-analysis comparing the effectiveness of history and physical examination (H&P) with ECG at detecting both cardiac disease and sudden cardiac death-associated conditions (SCD-AC). Pre-participation studies published from 2015 to 2020 with athletes 10 to 35 years old were included. This yielded 28 011 athletes screened and 124 cardiac diagnoses, 103 of which were SCD-AC. A meta-analysis of log odds ratios (ORs) was conducted using a random-effects model. The ORs for the association between H&P and detecting both cardiac disease and SCD-AC were not statistically significant (OR = 3.4, = .076; OR = 2.9, = .078). The ORs for the association between ECG and detecting both cardiac disease and SCD-AC were statistically significant (60, < .001; 148, < .0001). In conclusion, the odds of detecting both cardiac disease and conditions related to SCD with ECG are greater than with H&P during sports pre-participation screening.

摘要

在运动前参与筛查中使用心电图 (ECG) 存在争议。我们进行了一项荟萃分析,比较了病史和体检 (H&P) 与 ECG 在检测心脏疾病和与心脏性猝死相关的疾病 (SCD-AC) 方面的有效性。纳入了 2015 年至 2020 年期间针对 10 至 35 岁运动员进行的研究。共筛查了 28011 名运动员,发现了 124 例心脏诊断,其中 103 例为 SCD-AC。使用随机效应模型对对数比值比 (OR) 进行了荟萃分析。H&P 与检测心脏疾病和 SCD-AC 的相关性的 OR 没有统计学意义 (OR=3.4, =.076;OR=2.9, =.078)。ECG 与检测心脏疾病和 SCD-AC 的相关性的 OR 具有统计学意义 (60, <.001;148, <.0001)。总之,在运动前参与筛查中,使用 ECG 检测心脏疾病和与 SCD 相关疾病的几率大于使用 H&P。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c4b7/10478328/28c9a268f2e0/10.1177_00099228231152857-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验