Krause R, Aeschlimann S, Chávez-Cervantes M, Perea-Causin R, Brem S, Malic E, Forti S, Fabbri F, Coletti C, Gierz I
University of Regensburg, Institute for Experimental and Applied Physics, 93040 Regensburg, Germany.
Max Planck Institute for the Structure and Dynamics of Matter, Center for Free Electron Laser Science, 22761 Hamburg, Germany.
Phys Rev Lett. 2021 Dec 31;127(27):276401. doi: 10.1103/PhysRevLett.127.276401.
Van der Waals heterostructures show many intriguing phenomena including ultrafast charge separation following strong excitonic absorption in the visible spectral range. However, despite the enormous potential for future applications in the field of optoelectronics, the underlying microscopic mechanism remains controversial. Here we use time- and angle-resolved photoemission spectroscopy combined with microscopic many-particle theory to reveal the relevant microscopic charge transfer channels in epitaxial WS_{2}/graphene heterostructures. We find that the timescale for efficient ultrafast charge separation in the material is determined by direct tunneling at those points in the Brillouin zone where WS_{2} and graphene bands cross, while the lifetime of the charge separated transient state is set by defect-assisted tunneling through localized sulphur vacancies. The subtle interplay of intrinsic and defect-related charge transfer channels revealed in the present work can be exploited for the design of highly efficient light harvesting and detecting devices.
范德华异质结构展现出许多有趣的现象,包括在可见光谱范围内强激子吸收后超快的电荷分离。然而,尽管在光电子学领域未来应用潜力巨大,但其潜在的微观机制仍存在争议。在此,我们使用时间分辨和角分辨光电子能谱结合微观多粒子理论,来揭示外延WS₂/石墨烯异质结构中相关的微观电荷转移通道。我们发现,材料中高效超快电荷分离的时间尺度由布里渊区中WS₂和石墨烯能带交叉点处的直接隧穿决定,而电荷分离瞬态的寿命则由通过局域硫空位的缺陷辅助隧穿设定。本工作中揭示的本征和与缺陷相关的电荷转移通道之间的微妙相互作用,可用于设计高效的光捕获和检测器件。