Suppr超能文献

利用埃及风湿病学院(ECR)-BD 队列开发用于检测威胁视力的贝赫切特病(BD)的机器学习模型。

Development of machine learning models for detection of vision threatening Behçet's disease (BD) using Egyptian College of Rheumatology (ECR)-BD cohort.

机构信息

Department of Rheumatology and Rehabilitation, Faculty of Medicine, Assiut University, Assiut, Egypt.

Computer Science Department, Higher Institute of Computer Science and Information Systems, Culture and Science City, Giza, Egypt.

出版信息

BMC Med Inform Decis Mak. 2023 Feb 17;23(1):37. doi: 10.1186/s12911-023-02130-6.

Abstract

BACKGROUND

Eye lesions, occur in nearly half of patients with Behçet's Disease (BD), can lead to irreversible damage and vision loss; however, limited studies are available on identifying risk factors for the development of vision-threatening BD (VTBD). Using an Egyptian college of rheumatology (ECR)-BD, a national cohort of BD patients, we examined the performance of machine-learning (ML) models in predicting VTBD compared to logistic regression (LR) analysis. We identified the risk factors for the development of VTBD.

METHODS

Patients with complete ocular data were included. VTBD was determined by the presence of any retinal disease, optic nerve involvement, or occurrence of blindness. Various ML-models were developed and examined for VTBD prediction. The Shapley additive explanation value was used for the interpretability of the predictors.

RESULTS

A total of 1094 BD patients [71.5% were men, mean ± SD age 36.1 ± 10 years] were included. 549 (50.2%) individuals had VTBD. Extreme Gradient Boosting was the best-performing ML model (AUROC 0.85, 95% CI 0.81, 0.90) compared with logistic regression (AUROC 0.64, 95%CI 0.58, 0.71). Higher disease activity, thrombocytosis, ever smoking, and daily steroid dose were the top factors associated with VTBD.

CONCLUSIONS

Using information obtained in the clinical settings, the Extreme Gradient Boosting identified patients at higher risk of VTBD better than the conventional statistical method. Further longitudinal studies to evaluate the clinical utility of the proposed prediction model are needed.

摘要

背景

眼部病变几乎发生在半数以上的贝赫切特病(BD)患者中,可导致不可逆的损害和视力丧失;然而,目前关于识别威胁视力的 BD(VTBD)发生风险因素的研究有限。我们利用埃及风湿病学院(ECR)-BD,即一个全国性的 BD 患者队列,检查了机器学习(ML)模型在预测 VTBD 方面的表现,与逻辑回归(LR)分析相比。我们确定了 VTBD 发展的风险因素。

方法

纳入具有完整眼部数据的患者。VTBD 通过存在任何视网膜疾病、视神经受累或失明来确定。开发了各种 ML 模型来预测 VTBD。使用 Shapley 加性解释值来解释预测因子。

结果

共纳入 1094 例 BD 患者[71.5%为男性,平均年龄±标准差为 36.1±10 岁],其中 549 例(50.2%)发生 VTBD。极端梯度增强是表现最佳的 ML 模型(AUROC 0.85,95%CI 0.81,0.90),优于逻辑回归(AUROC 0.64,95%CI 0.58,0.71)。更高的疾病活动度、血小板增多、吸烟史和每日激素剂量是与 VTBD 相关的最重要因素。

结论

使用临床环境中获得的信息,极端梯度增强比传统的统计方法更好地识别出 VTBD 风险更高的患者。需要进一步进行前瞻性研究来评估所提出的预测模型的临床实用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验