Suppr超能文献

磁增强一维光活性微群用于 COVID-19 口罩破坏。

Magnetically boosted 1D photoactive microswarm for COVID-19 face mask disruption.

机构信息

Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague, Czech Republic.

Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00, Ostrava, Czech Republic.

出版信息

Nat Commun. 2023 Feb 20;14(1):935. doi: 10.1038/s41467-023-36650-6.

Abstract

The recent COVID-19 pandemic has resulted in the massive discard of pandemic-related plastic wastes, causing serious ecological harm and a high societal burden. Most single-use face masks are made of synthetic plastics, thus their careless disposal poses a direct threat to wildlife as well as potential ecotoxicological effects in the form of microplastics. Here, we introduce a 1D magnetic photoactive microswarm capable of actively navigating, adhering to, and accelerating the degradation of the polypropylene microfiber of COVID-19 face masks. 1D microrobots comprise an anisotropic magnetic core (FeO) and photocatalytic shell (BiO/Ag), which enable wireless magnetic maneuvering and visible-light photocatalysis. The actuation of a programmed rotating magnetic field triggers a fish schooling-like 1D microswarm that allows active interfacial interactions with the microfiber network. The follow-up light illumination accelerates the disruption of the polypropylene microfiber through the photo-oxidative process as corroborated by morphological, compositional, and structural analyses. The active magnetic photocatalyst microswarm suggests an intriguing microrobotic solution to treat various plastic wastes and other environmental pollutants.

摘要

最近的 COVID-19 大流行导致了大量与大流行相关的塑料废物的丢弃,对生态造成了严重的危害,也给社会带来了沉重的负担。大多数一次性口罩都是由合成塑料制成的,因此它们的随意丢弃不仅直接威胁到野生动物,而且还可能以微塑料的形式产生潜在的生态毒理学效应。在这里,我们介绍了一种 1D 磁性光活性微群,它能够主动导航、粘附并加速降解 COVID-19 口罩的聚丙烯微纤维。1D 微型机器人由各向异性的磁性内核(FeO)和光催化外壳(BiO/Ag)组成,可实现无线磁操纵和可见光光催化。程序化旋转磁场的驱动引发了类似鱼群的 1D 微群运动,使其能够与微纤维网络进行主动的界面相互作用。后续的光照通过光氧化过程加速了聚丙烯微纤维的破坏,这一点可以通过形态、组成和结构分析得到证实。这种主动磁性光催化剂微群为处理各种塑料废物和其他环境污染物提供了一种有趣的微型机器人解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5862/9941517/80ace2909577/41467_2023_36650_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验