HiLIFE-Helsinki Institute of Life Science, Yliopistonkatu 4, 00014 University of Helsinki, 00100 Helsinki, Finland.
iCAN Digital Precision Cancer Medicine Flagship, Stenbäckinkatu 9 Hallintokeskus, University of Helsinki, 00290 Helsinki, Finland.
Dis Model Mech. 2023 Mar 1;16(3). doi: 10.1242/dmm.049756. Epub 2023 Mar 13.
Intestinal epithelial organoids recapitulate many of the in vivo features of the intestinal epithelium, thus representing excellent research models. Morphology of the organoids based on light-microscopy images is used as a proxy to assess the biological state of the intestinal epithelium. Currently, organoid classification is manual and, therefore, subjective and time consuming, hampering large-scale quantitative analyses. Here, we describe Tellu, an object-detector algorithm trained to classify cultured intestinal organoids. Tellu was trained by manual annotation of >20,000 intestinal organoids to identify cystic non-budding organoids, early organoids, late organoids and spheroids. Tellu can also be used to quantify the relative organoid size, and can classify intestinal organoids into these four subclasses with accuracy comparable to that of trained scientists but is significantly faster and without bias. Tellu is provided as an open, user-friendly online tool to benefit the increasing number of investigations using organoids through fast and unbiased organoid morphology and size analysis.
肠上皮类器官再现了许多体内的肠道上皮特征,因此是极好的研究模型。基于显微镜图像的类器官形态被用作评估肠道上皮生物学状态的替代指标。目前,类器官的分类是手动的,因此具有主观性和耗时性,阻碍了大规模的定量分析。在这里,我们描述了 Tellu,这是一种针对培养的肠道类器官进行分类的目标探测器算法。Tellu 通过对 >20000 个肠道类器官的手动注释进行训练,以识别囊性非芽生类器官、早期类器官、晚期类器官和球体。Tellu 还可用于定量相对类器官大小,并可以将肠道类器官分为这四个子类,其准确性可与训练有素的科学家相媲美,但速度更快且没有偏差。Tellu 作为一个开放的、用户友好的在线工具提供,通过快速和无偏的类器官形态和大小分析,使越来越多的使用类器官的研究从中受益。