Suppr超能文献

逐步增强/软化和细胞从可还原配方水凝胶互穿网络中恢复。

Stepwise Stiffening/Softening of and Cell Recovery from Reversibly Formulated Hydrogel Interpenetrating Networks.

机构信息

Department of Bioengineering, University of Washington, Seattle, WA, 98105, USA.

Department of Chemical Engineering, University of Washington, Seattle, WA, 98105, USA.

出版信息

Adv Mater. 2024 Nov;36(44):e2404880. doi: 10.1002/adma.202404880. Epub 2024 Sep 6.

Abstract

Biomechanical contributions of the extracellular matrix underpin cell growth and proliferation, differentiation, signal transduction, and other fate decisions. As such, biomaterials whose mechanics can be spatiotemporally altered- particularly in a reversible manner- are extremely valuable for studying these mechanobiological phenomena. Herein, a poly(ethylene glycol) (PEG)-based hydrogel model consisting of two interpenetrating step-growth networks is introduced that are independently formed via largely orthogonal bioorthogonal chemistries and sequentially degraded with distinct recombinant sortases, affording reversibly tunable stiffness ranges that span healthy and diseased soft tissues (e.g., 500 Pa-6 kPa) alongside terminal cell recovery for pooled and/or single-cell analysis in a near "biologically invisible" manner. Spatiotemporal control of gelation within the primary supporting network is achieved via mask-based and two-photon lithography; these stiffened patterned regions can be subsequently returned to the original soft state following sortase-based secondary network degradation. Using this approach, the effects of 4D-triggered network mechanical changes on human mesenchymal stem cell morphology and Hippo signaling, as well as Caco-2 colorectal cancer cell mechanomemory using transcriptomics and metabolic assays are investigated. This platform is expected to be of broad utility for studying and directing mechanobiological phenomena, patterned cell fate, and disease resolution in softer matrices.

摘要

细胞外基质的生物力学贡献为细胞生长和增殖、分化、信号转导和其他命运决定提供了基础。因此,能够改变力学性能的生物材料(尤其是以可恢复的方式改变)对于研究这些机械生物学现象非常有价值。本文介绍了一种基于聚乙二醇(PEG)的水凝胶模型,该模型由两个互穿的逐步生长网络组成,这两个网络通过两种主要正交的生物正交化学方法独立形成,并通过两种不同的重组分选酶进行顺序降解,从而提供了可恢复调节的硬度范围,涵盖了健康和患病的软组织(例如 500 Pa-6 kPa),同时还可以实现池化和/或单细胞分析的细胞端回收,方式近乎“生物不可见”。通过掩模和双光子光刻实现了初级支撑网络内凝胶化的时空控制;在基于分选酶的二级网络降解后,这些增强的图案化区域可以恢复到原始的柔软状态。通过这种方法,研究了 4D 触发的网络力学变化对人骨髓间充质干细胞形态和 Hippo 信号的影响,以及使用转录组学和代谢测定法研究了 Caco-2 结直肠癌细胞的机械记忆。该平台有望广泛用于研究和指导更软基质中的机械生物学现象、图案化细胞命运和疾病消退。

相似文献

1
Stepwise Stiffening/Softening of and Cell Recovery from Reversibly Formulated Hydrogel Interpenetrating Networks.
Adv Mater. 2024 Nov;36(44):e2404880. doi: 10.1002/adma.202404880. Epub 2024 Sep 6.
2
Stepwise Stiffening/Softening of and Cell Recovery from Reversibly Formulated Hydrogel Double Networks.
bioRxiv. 2024 Apr 8:2024.04.04.588191. doi: 10.1101/2024.04.04.588191.
3
Dynamic control of hydrogel crosslinking via sortase-mediated reversible transpeptidation.
Acta Biomater. 2019 Jan 1;83:83-95. doi: 10.1016/j.actbio.2018.11.011. Epub 2018 Nov 8.
4
Self-healing, stretchable and robust interpenetrating network hydrogels.
Biomater Sci. 2018 Nov 1;6(11):2932-2937. doi: 10.1039/c8bm00872h. Epub 2018 Sep 21.
5
Orthogonal enzymatic reactions for rapid crosslinking and dynamic tuning of PEG-peptide hydrogels.
Biomater Sci. 2017 Oct 24;5(11):2231-2240. doi: 10.1039/c7bm00691h.
8
Incorporation of a silicon-based polymer to PEG-DA templated hydrogel scaffolds for bioactivity and osteoinductivity.
Acta Biomater. 2019 Nov;99:100-109. doi: 10.1016/j.actbio.2019.09.018. Epub 2019 Sep 16.
9
Biomimetic hydrogels for chondrogenic differentiation of human mesenchymal stem cells to neocartilage.
Biomaterials. 2010 Oct;31(28):7298-307. doi: 10.1016/j.biomaterials.2010.06.001.

引用本文的文献

1
Bioorthogonal Engineering of Cellular Microenvironments Using Isonitrile Ligations.
Adv Funct Mater. 2025 May 30. doi: 10.1002/adfm.202422047.
2
Precision nanomaterials in colorectal cancer: advancing photodynamic and photothermal therapy.
RSC Adv. 2025 Jul 25;15(33):26583-26600. doi: 10.1039/d5ra03996g.
3
Reversible Stiffening of Biopolymeric Hybrid Networks by Dynamically Switching Cross-Links .
ACS Appl Mater Interfaces. 2025 May 21;17(20):29276-29290. doi: 10.1021/acsami.5c03419. Epub 2025 May 13.
4
Matrix Stiffness and Biochemistry Govern Colorectal Cancer Cell Growth and Signaling in User-Programmable Synthetic Hydrogels.
ACS Biomater Sci Eng. 2025 May 12;11(5):2810-2823. doi: 10.1021/acsbiomaterials.4c01632. Epub 2025 Apr 30.
5
Suspended Tissue Open Microfluidic Patterning (STOMP).
Adv Sci (Weinh). 2025 Apr 29:e2501148. doi: 10.1002/advs.202501148.
6
Mechanomemory after short episodes of intermittent stresses induces YAP translocation via increasing F-actin.
APL Bioeng. 2025 Apr 18;9(2):026107. doi: 10.1063/5.0253046. eCollection 2025 Jun.
7
Rapid and Inexpensive Image-Guided Grayscale Biomaterial Customization via LCD Printing.
J Biomed Mater Res A. 2025 Apr;113(4):e37897. doi: 10.1002/jbm.a.37897.
8
Current state of cancer immunity cycle: new strategies and challenges of using precision hydrogels to treat breast cancer.
Front Immunol. 2025 Mar 7;16:1535464. doi: 10.3389/fimmu.2025.1535464. eCollection 2025.
9
Suspended Tissue Open Microfluidic Patterning (STOMP).
bioRxiv. 2025 Mar 29:2024.10.04.616662. doi: 10.1101/2024.10.04.616662.

本文引用的文献

1
Genetically Encoded XTEN-based Hydrogels with Tunable Viscoelasticity and Biodegradability for Injectable Cell Therapies.
Adv Sci (Weinh). 2024 Jun;11(24):e2301708. doi: 10.1002/advs.202301708. Epub 2024 Mar 13.
2
Viscoelastic stiffening of gelatin hydrogels for dynamic culture of pancreatic cancer spheroids.
Acta Biomater. 2024 Mar 15;177:203-215. doi: 10.1016/j.actbio.2024.02.010. Epub 2024 Feb 12.
3
Linking cell mechanical memory and cancer metastasis.
Nat Rev Cancer. 2024 Mar;24(3):216-228. doi: 10.1038/s41568-023-00656-5. Epub 2024 Jan 18.
6
Mechanosensitive mTORC1 signaling maintains lymphatic valves.
J Cell Biol. 2023 Jun 5;222(6). doi: 10.1083/jcb.202207049. Epub 2023 Apr 10.
7
User-Controlled 4D Biomaterial Degradation with Substrate-Selective Sortase Transpeptidases for Single-Cell Biology.
Adv Mater. 2023 May;35(19):e2209904. doi: 10.1002/adma.202209904. Epub 2023 Mar 29.
8
Dynamic Magneto-Softening of 3D Hydrogel Reverses Malignant Transformation of Cancer Cells and Enhances Drug Efficacy.
ACS Nano. 2023 Feb 14;17(3):2851-2867. doi: 10.1021/acsnano.2c11278. Epub 2023 Jan 12.
9
Adhesive peptide and polymer density modulate 3D cell traction forces within synthetic hydrogels.
Biomaterials. 2022 Sep;288:121710. doi: 10.1016/j.biomaterials.2022.121710. Epub 2022 Aug 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验