Suppr超能文献

可逆配方水凝胶双网络的逐步硬化/软化及细胞恢复

Stepwise Stiffening/Softening of and Cell Recovery from Reversibly Formulated Hydrogel Double Networks.

作者信息

Kopyeva Irina, Goldner Ethan C, Hoye Jack W, Yang Shiyu, Regier Mary C, Vera Kaitlyn R, Bretherton Ross C, DeForest Cole A

机构信息

Department of Bioengineering, University of Washington, Seattle WA 98105, USA.

Department of Chemical Engineering, University of Washington, Seattle WA 98105, USA.

出版信息

bioRxiv. 2024 Apr 8:2024.04.04.588191. doi: 10.1101/2024.04.04.588191.

Abstract

Biomechanical contributions of the ECM underpin cell growth and proliferation, differentiation, signal transduction, and other fate decisions. As such, biomaterials whose mechanics can be spatiotemporally altered - particularly in a reversible manner - are extremely valuable for studying these mechanobiological phenomena. Herein, we introduce a poly(ethylene glycol) (PEG)-based hydrogel model consisting of two interpenetrating step-growth networks that are independently formed via largely orthogonal bioorthogonal chemistries and sequentially degraded with distinct bacterial transpeptidases, affording reversibly tunable stiffness ranges that span healthy and diseased soft tissues (e.g., 500 Pa - 6 kPa) alongside terminal cell recovery for pooled and/or single-cell analysis in a near "biologically invisible" manner. Spatiotemporal control of gelation within the primary supporting network was achieved via mask-based and two-photon lithography; these stiffened patterned regions could be subsequently returned to the original soft state following sortase-based secondary network degradation. Using this approach, we investigated the effects of 4D-triggered network mechanical changes on human mesenchymal stem cell (hMSC) morphology and Hippo signaling, as well as Caco-2 colorectal cancer cell mechanomemory at the global transcriptome level via RNAseq. We expect this platform to be of broad utility for studying and directing mechanobiological phenomena, patterned cell fate, as well as disease resolution in softer matrices.

摘要

细胞外基质的生物力学作用支撑着细胞的生长与增殖、分化、信号转导及其他命运决定。因此,其力学性能可在时空上发生改变(尤其是以可逆方式)的生物材料,对于研究这些力学生物学现象极具价值。在此,我们介绍一种基于聚乙二醇(PEG)的水凝胶模型,它由两个互穿的逐步增长网络组成,这两个网络通过基本正交的生物正交化学独立形成,并由不同的细菌转肽酶依次降解,可提供跨越健康和患病软组织的可逆可调刚度范围(例如500帕 - 6千帕),同时以近乎“生物不可见”的方式实现汇集和/或单细胞分析的终末细胞回收。通过基于掩膜和双光子光刻实现了初级支撑网络内凝胶化的时空控制;在基于分选酶的二级网络降解后,这些硬化的图案化区域可随后恢复到原始的柔软状态。利用这种方法,我们研究了4D触发的网络力学变化对人间充质干细胞(hMSC)形态和Hippo信号传导的影响,以及通过RNAseq在全球转录组水平上Caco - 2结肠癌细胞的机械记忆。我们期望这个平台在研究和指导力学生物学现象、图案化细胞命运以及更柔软基质中的疾病解决方面具有广泛的用途。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d215/11030224/8794feecf727/nihpp-2024.04.04.588191v1-f0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验