Moldwin Toviah, Segev Idan
Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
Department of Neurobiology, The Hebrew University of Jerusalem, Jerusalem, Israel.
Front Comput Neurosci. 2020 Apr 24;14:33. doi: 10.3389/fncom.2020.00033. eCollection 2020.
The perceptron learning algorithm and its multiple-layer extension, the backpropagation algorithm, are the foundations of the present-day machine learning revolution. However, these algorithms utilize a highly simplified mathematical abstraction of a neuron; it is not clear to what extent real biophysical neurons with morphologically-extended non-linear dendritic trees and conductance-based synapses can realize perceptron-like learning. Here we implemented the perceptron learning algorithm in a realistic biophysical model of a layer 5 cortical pyramidal cell with a full complement of non-linear dendritic channels. We tested this biophysical perceptron (BP) on a classification task, where it needed to correctly binarily classify 100, 1,000, or 2,000 patterns, and a generalization task, where it was required to discriminate between two "noisy" patterns. We show that the BP performs these tasks with an accuracy comparable to that of the original perceptron, though the classification capacity of the apical tuft is somewhat limited. We concluded that cortical pyramidal neurons can act as powerful classification devices.
感知机学习算法及其多层扩展——反向传播算法,是当今机器学习革命的基础。然而,这些算法使用的是对神经元高度简化的数学抽象;目前尚不清楚具有形态学上扩展的非线性树突状树和基于电导的突触的真实生物物理神经元在多大程度上能够实现类似感知机的学习。在这里,我们在具有完整非线性树突通道的第5层皮质锥体细胞的真实生物物理模型中实现了感知机学习算法。我们在一个分类任务上测试了这个生物物理感知机(BP),在该任务中它需要对100、1000或2000个模式进行正确的二分类,以及在一个泛化任务中,它需要区分两个“有噪声”的模式。我们表明,尽管顶端树突的分类能力有些有限,但BP执行这些任务的准确率与原始感知机相当。我们得出结论,皮质锥体细胞可以作为强大的分类装置。