Suppr超能文献

用于可持续可编程材料发现的自动化生物材料组学平台。

An automated biomateriomics platform for sustainable programmable materials discovery.

作者信息

Lee Nicolas A, Shen Sabrina C, Buehler Markus J

机构信息

Laboratory for Atomistic and Molecular Mechanics (LAMM), Massachusetts Institute of Technology, 77 Massachusetts Avenue 1-165, Cambridge, MA 02139, USA.

School of Architecture and Planning, Media Lab, Massachusetts Institute of Technology, 75 Amherst Street, Cambridge, MA 02139, USA.

出版信息

Matter. 2022 Nov 2;5(11):3597-3613. doi: 10.1016/j.matt.2022.10.003.

Abstract

Recently, the potential to create functional materials from various forms of organic matter has received increased interest due to its potential to address environmental concerns. However, the process of creating novel materials from biomass requires extensive experimentation. A promising means of predicting the properties of such materials would be the use of machine-learning models trained on or integrated into self-learned experimental data and methods. We outline an automated system for the discovery and characterization of novel, sustainable, and functional materials from input biomass. Artificial intelligence provides the capacity to examine experimental data, draw connections between composite composition and behavior, and design future experiments to expand the system's understanding of the studied materials. Extensions to the system are described that could further accelerate the discovery of sustainable composites, including the use of interpretable machine-learning methods to expand the insights gleaned from to human-readable materiomic insights about material process-structure-functional relationships.

摘要

最近,利用各种形式的有机物质制造功能材料的潜力因其解决环境问题的潜力而受到越来越多的关注。然而,从生物质中制造新型材料的过程需要大量实验。一种预测此类材料性能的有前景的方法是使用基于自学实验数据和方法训练或集成的机器学习模型。我们概述了一个自动化系统,用于从输入的生物质中发现和表征新型、可持续和功能性材料。人工智能提供了检查实验数据、建立复合材料组成与性能之间联系以及设计未来实验以扩展系统对所研究材料理解的能力。文中描述了该系统的扩展,这些扩展可以进一步加速可持续复合材料的发现,包括使用可解释的机器学习方法将从材料过程 - 结构 - 功能关系中获得的见解扩展为人类可读的材料组学见解。

相似文献

6
A Materials Acceleration Platform for Organic Laser Discovery.有机激光发现的材料加速平台。
Adv Mater. 2023 Feb;35(6):e2207070. doi: 10.1002/adma.202207070. Epub 2022 Dec 14.
7
Discovery of novel materials through machine learning.通过机器学习发现新型材料。
J Phys Condens Matter. 2024 Aug 14;36(45). doi: 10.1088/1361-648X/ad6bdb.
9
The Future of Material Scientists in an Age of Artificial Intelligence.人工智能时代材料科学家的未来。
Adv Sci (Weinh). 2024 May;11(19):e2401401. doi: 10.1002/advs.202401401. Epub 2024 Mar 13.

引用本文的文献

本文引用的文献

1
5
Machine learning in combinatorial polymer chemistry.组合聚合物化学中的机器学习
Nat Rev Mater. 2021 Aug;6:642-644. doi: 10.1038/s41578-021-00282-3. Epub 2021 Feb 5.
7
Definitions, methods, and applications in interpretable machine learning.可解释机器学习中的定义、方法和应用。
Proc Natl Acad Sci U S A. 2019 Oct 29;116(44):22071-22080. doi: 10.1073/pnas.1900654116. Epub 2019 Oct 16.
10
Production, use, and fate of all plastics ever made.所有塑料制品的生产、使用及去向。
Sci Adv. 2017 Jul 19;3(7):e1700782. doi: 10.1126/sciadv.1700782. eCollection 2017 Jul.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验