Suppr超能文献

释放人工智能在材料设计中的力量。

Unleashing the Power of Artificial Intelligence in Materials Design.

作者信息

Badini Silvia, Regondi Stefano, Pugliese Raffaele

机构信息

NeMO Lab, ASST GOM Niguarda Cà Granda Hospital, 20162 Milan, Italy.

出版信息

Materials (Basel). 2023 Aug 30;16(17):5927. doi: 10.3390/ma16175927.

Abstract

The integration of artificial intelligence (AI) algorithms in materials design is revolutionizing the field of materials engineering thanks to their power to predict material properties, design de novo materials with enhanced features, and discover new mechanisms beyond intuition. In addition, they can be used to infer complex design principles and identify high-quality candidates more rapidly than trial-and-error experimentation. From this perspective, herein we describe how these tools can enable the acceleration and enrichment of each stage of the discovery cycle of novel materials with optimized properties. We begin by outlining the state-of-the-art AI models in materials design, including machine learning (ML), deep learning, and materials informatics tools. These methodologies enable the extraction of meaningful information from vast amounts of data, enabling researchers to uncover complex correlations and patterns within material properties, structures, and compositions. Next, a comprehensive overview of AI-driven materials design is provided and its potential future prospects are highlighted. By leveraging such AI algorithms, researchers can efficiently search and analyze databases containing a wide range of material properties, enabling the identification of promising candidates for specific applications. This capability has profound implications across various industries, from drug development to energy storage, where materials performance is crucial. Ultimately, AI-based approaches are poised to revolutionize our understanding and design of materials, ushering in a new era of accelerated innovation and advancement.

摘要

人工智能(AI)算法在材料设计中的整合正在彻底改变材料工程领域,这得益于其预测材料性能、设计具有增强特性的全新材料以及发现直觉之外新机制的能力。此外,与反复试验的实验方法相比,它们可用于推断复杂的设计原则并更快地识别高质量候选材料。从这个角度来看,在此我们描述这些工具如何能够加速和丰富具有优化性能的新型材料发现周期的每个阶段。我们首先概述材料设计中的最新人工智能模型,包括机器学习(ML)、深度学习和材料信息学工具。这些方法能够从大量数据中提取有意义的信息,使研究人员能够揭示材料性能、结构和成分之间的复杂关联和模式。接下来,提供了人工智能驱动的材料设计的全面概述,并强调了其潜在的未来前景。通过利用此类人工智能算法,研究人员可以高效地搜索和分析包含广泛材料性能的数据库,从而识别出特定应用的有前景的候选材料。这种能力在从药物开发到能量存储等各个行业都具有深远影响,在这些行业中材料性能至关重要。最终,基于人工智能的方法有望彻底改变我们对材料的理解和设计,迎来加速创新和进步的新时代。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c704/10488647/fe8a3e5ff860/materials-16-05927-g001.jpg

相似文献

1
Unleashing the Power of Artificial Intelligence in Materials Design.
Materials (Basel). 2023 Aug 30;16(17):5927. doi: 10.3390/ma16175927.
2
Protein Science Meets Artificial Intelligence: A Systematic Review and a Biochemical Meta-Analysis of an Inter-Field.
Front Bioeng Biotechnol. 2022 Jul 7;10:788300. doi: 10.3389/fbioe.2022.788300. eCollection 2022.
3
Unleashing the power of generative AI in drug discovery.
Drug Discov Today. 2024 Jun;29(6):103992. doi: 10.1016/j.drudis.2024.103992. Epub 2024 Apr 23.
5
Artificial Intelligence in Drug Design: Are We Still There?
Curr Top Med Chem. 2022;22(30):2483-2492. doi: 10.2174/1568026623666221017143244.
6
Artificial intelligence and machine learning in design of mechanical materials.
Mater Horiz. 2021 Apr 1;8(4):1153-1172. doi: 10.1039/d0mh01451f. Epub 2021 Jan 7.
7
Artificial Intelligence and Machine Learning in Pharmacological Research: Bridging the Gap Between Data and Drug Discovery.
Cureus. 2023 Aug 30;15(8):e44359. doi: 10.7759/cureus.44359. eCollection 2023 Aug.
8
AI-Powered Microfluidics: Shaping the Future of Phenotypic Drug Discovery.
ACS Appl Mater Interfaces. 2024 Jul 31;16(30):38832-38851. doi: 10.1021/acsami.4c07665. Epub 2024 Jul 17.
9
Smart Smile: Revolutionizing Dentistry With Artificial Intelligence.
Cureus. 2023 Jun 30;15(6):e41227. doi: 10.7759/cureus.41227. eCollection 2023 Jun.
10
Artificial Intelligence and Quantum Computing as the Next Pharma Disruptors.
Methods Mol Biol. 2022;2390:321-347. doi: 10.1007/978-1-0716-1787-8_14.

引用本文的文献

1
Iron-Based High-Temperature Alloys: Alloying Strategies and New Opportunities.
Materials (Basel). 2025 Jun 24;18(13):2989. doi: 10.3390/ma18132989.
2
Recent Progress of Artificial Intelligence Application in Polymer Materials.
Polymers (Basel). 2025 Jun 16;17(12):1667. doi: 10.3390/polym17121667.
3
The ethics of using artificial intelligence in scientific research: new guidance needed for a new tool.
AI Ethics. 2025 Apr;5(2):1499-1521. doi: 10.1007/s43681-024-00493-8. Epub 2024 May 27.
4
6
Advanced Computational Methods for Modeling, Prediction and Optimization-A Review.
Materials (Basel). 2024 Jul 16;17(14):3521. doi: 10.3390/ma17143521.
7
Achieving Endo/Lysosomal Escape Using Smart Nanosystems for Efficient Cellular Delivery.
Molecules. 2024 Jul 1;29(13):3131. doi: 10.3390/molecules29133131.
8
AI-Based Metamaterial Design.
ACS Appl Mater Interfaces. 2024 Jun 12;16(23):29547-29569. doi: 10.1021/acsami.4c04486. Epub 2024 May 29.
9
Estimation of concrete materials uniaxial compressive strength using soft computing techniques.
Heliyon. 2023 Nov 19;9(11):e22502. doi: 10.1016/j.heliyon.2023.e22502. eCollection 2023 Nov.
10
Recent Advances in the Development of Biomimetic Materials.
Gels. 2023 Oct 20;9(10):833. doi: 10.3390/gels9100833.

本文引用的文献

1
Accelerating the design of compositionally complex materials via physics-informed artificial intelligence.
Nat Comput Sci. 2023 Mar;3(3):198-209. doi: 10.1038/s43588-023-00412-7. Epub 2023 Mar 31.
2
Generative design of proteins based on secondary structure constraints using an attention-based diffusion model.
Chem. 2023 Jul 13;9(7):1828-1849. doi: 10.1016/j.chempr.2023.03.020. Epub 2023 Apr 20.
3
Modeling and design of heterogeneous hierarchical bioinspired spider web structures using deep learning and additive manufacturing.
Proc Natl Acad Sci U S A. 2023 Aug;120(31):e2305273120. doi: 10.1073/pnas.2305273120. Epub 2023 Jul 24.
4
Biomimetic scaffolds using triply periodic minimal surface-based porous structures for biomedical applications.
SLAS Technol. 2023 Jun;28(3):165-182. doi: 10.1016/j.slast.2023.04.004. Epub 2023 Apr 29.
5
Fill in the Blank: Transferrable Deep Learning Approaches to Recover Missing Physical Field Information.
Adv Mater. 2023 Jun;35(23):e2301449. doi: 10.1002/adma.202301449. Epub 2023 Apr 25.
6
An automated biomateriomics platform for sustainable programmable materials discovery.
Matter. 2022 Nov 2;5(11):3597-3613. doi: 10.1016/j.matt.2022.10.003.
7
Computational Design and Manufacturing of Sustainable Materials through First-Principles and Materiomics.
Chem Rev. 2023 Mar 8;123(5):2242-2275. doi: 10.1021/acs.chemrev.2c00479. Epub 2023 Jan 5.
8
Machine learning-enabled high-entropy alloy discovery.
Science. 2022 Oct 7;378(6615):78-85. doi: 10.1126/science.abo4940. Epub 2022 Oct 6.
9
High-Throughput Generation of 3D Graphene Metamaterials and Property Quantification Using Machine Learning.
Small Methods. 2022 Sep;6(9):e2200537. doi: 10.1002/smtd.202200537. Epub 2022 Jul 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验