Badini Silvia, Regondi Stefano, Pugliese Raffaele
NeMO Lab, ASST GOM Niguarda Cà Granda Hospital, 20162 Milan, Italy.
Materials (Basel). 2023 Aug 30;16(17):5927. doi: 10.3390/ma16175927.
The integration of artificial intelligence (AI) algorithms in materials design is revolutionizing the field of materials engineering thanks to their power to predict material properties, design de novo materials with enhanced features, and discover new mechanisms beyond intuition. In addition, they can be used to infer complex design principles and identify high-quality candidates more rapidly than trial-and-error experimentation. From this perspective, herein we describe how these tools can enable the acceleration and enrichment of each stage of the discovery cycle of novel materials with optimized properties. We begin by outlining the state-of-the-art AI models in materials design, including machine learning (ML), deep learning, and materials informatics tools. These methodologies enable the extraction of meaningful information from vast amounts of data, enabling researchers to uncover complex correlations and patterns within material properties, structures, and compositions. Next, a comprehensive overview of AI-driven materials design is provided and its potential future prospects are highlighted. By leveraging such AI algorithms, researchers can efficiently search and analyze databases containing a wide range of material properties, enabling the identification of promising candidates for specific applications. This capability has profound implications across various industries, from drug development to energy storage, where materials performance is crucial. Ultimately, AI-based approaches are poised to revolutionize our understanding and design of materials, ushering in a new era of accelerated innovation and advancement.
人工智能(AI)算法在材料设计中的整合正在彻底改变材料工程领域,这得益于其预测材料性能、设计具有增强特性的全新材料以及发现直觉之外新机制的能力。此外,与反复试验的实验方法相比,它们可用于推断复杂的设计原则并更快地识别高质量候选材料。从这个角度来看,在此我们描述这些工具如何能够加速和丰富具有优化性能的新型材料发现周期的每个阶段。我们首先概述材料设计中的最新人工智能模型,包括机器学习(ML)、深度学习和材料信息学工具。这些方法能够从大量数据中提取有意义的信息,使研究人员能够揭示材料性能、结构和成分之间的复杂关联和模式。接下来,提供了人工智能驱动的材料设计的全面概述,并强调了其潜在的未来前景。通过利用此类人工智能算法,研究人员可以高效地搜索和分析包含广泛材料性能的数据库,从而识别出特定应用的有前景的候选材料。这种能力在从药物开发到能量存储等各个行业都具有深远影响,在这些行业中材料性能至关重要。最终,基于人工智能的方法有望彻底改变我们对材料的理解和设计,迎来加速创新和进步的新时代。