Jin Jin, Zhang Lin, Leng Ethan, Metzger Gregory J, Koopmeiners Joseph S
Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.
Devision of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, USA.
J Appl Stat. 2021 Dec 17;50(3):805-826. doi: 10.1080/02664763.2021.2017411. eCollection 2023.
Multi-parametric MRI (mpMRI) is a critical tool in prostate cancer (PCa) diagnosis and management. To further advance the use of mpMRI in patient care, computer aided diagnostic methods are under continuous development for supporting/supplanting standard radiological interpretation. While voxel-wise PCa classification models are the gold standard, few if any approaches have incorporated the inherent structure of the mpMRI data, such as spatial heterogeneity and between-voxel correlation, into PCa classification. We propose a machine learning-based method to fill in this gap. Our method uses an ensemble learning approach to capture regional heterogeneity in the data, where classifiers are developed at multiple resolutions and combined using the super learner algorithm, and further account for between-voxel correlation through a Gaussian kernel smoother. It allows any type of classifier to be the base learner and can be extended to further classify PCa sub-categories. We introduce the algorithms for binary PCa classification, as well as for classifying the ordinal clinical significance of PCa for which a weighted likelihood approach is implemented to improve the detection of less prevalent cancer categories. The proposed method has shown important advantages over conventional modeling and machine learning approaches in simulations and application to our motivating patient data.
多参数磁共振成像(mpMRI)是前列腺癌(PCa)诊断和管理中的关键工具。为了进一步推进mpMRI在患者护理中的应用,计算机辅助诊断方法正在不断发展,以支持/取代标准的放射学解读。虽然体素级PCa分类模型是金标准,但几乎没有方法将mpMRI数据的固有结构,如空间异质性和体素间相关性,纳入PCa分类中。我们提出了一种基于机器学习的方法来填补这一空白。我们的方法使用集成学习方法来捕捉数据中的区域异质性,即在多个分辨率下开发分类器并使用超级学习算法进行组合,并通过高斯核平滑器进一步考虑体素间相关性。它允许任何类型的分类器作为基础学习器,并且可以扩展以进一步对PCa子类别进行分类。我们介绍了用于二元PCa分类的算法,以及用于对PCa的序贯临床意义进行分类的算法,为此实施了加权似然方法以改善对不太常见癌症类别的检测。在模拟以及应用于我们的激励性患者数据时,所提出的方法已显示出优于传统建模和机器学习方法的重要优势。