Facultad de Odontología, División de Estudios de Posgrado e Investigación, Universidad Nacional Autónoma de México. Circuito exterior s/n, Ciudad Universitaria, 04510, Ciudad de México, Mexico.
Unidad de Ingeniería de Tejidos, Terapia Celular y Medicina Regenerativa; Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra; Av. México Xochimilco No. 289 Col. Arenal de Guadalupe C.P. 14389, Ciudad de México, Mexico.
Biomed Phys Eng Express. 2023 Mar 10;9(3). doi: 10.1088/2057-1976/acbe47.
Periodontitis is a highly prevalent infectious disease that causes the progressive destruction of the periodontal supporting tissues. If left untreated, it can lead to tooth loss impairing oral function, aesthetics, and the patient's overall quality of life. Guided and Bone Tissue Regeneration (GTR/BTR) are surgical therapies based on the placement of a membrane that prevents epithelial growth into the defect, allowing the periodontal/bone cells (including stem cells) to regenerate or restore the affected tissues. The success of these therapies is commonly affected by the local bacterial colonization of the membrane area and its fast biodegradation, causing postoperative infections and a premature rupture of the membrane limiting the regeneration process. This study presents the antibacterial and osteogenic differentiation properties of polycaprolactone-gelatin (PCL-G) electrospun membranes modified with ZnO nanoparticles (ZnO-NPs). The membranes´ chemical composition, surface roughness, biodegradation, water wettability, and mechanical properties under simulated physiological conditions, were analyzed by the close relationship with their biological properties. The PCL-G membranes modified with 1, 3, and 6% w/w of ZnO-NPs showed a significant reduction in the planktonic and biofilm formation of four clinically relevant bacteria;serotype b,, and. Additionally, the membranes presented appropriate mechanical properties and biodegradation rates to be potentially used in clinical treatments. Notably, the membranes modified with the lowest concentration of ZnO-NPs (1% w/w) stimulated the production of osteoblast markers and calcium deposits in human bone marrow-derived mesenchymal stem cells (BM-MSC) and were biocompatible to human osteoblasts cells (hFOB). These results suggest that the PCL-G membranes with 1% w/w of ZnO-NPs are high-potential candidates for GTR/BTR treatments, as they were the most effective in terms of better antibacterial effectiveness at a lower NPs-concentration while creating a favorable cellular microenvironment for bone growth.
牙周炎是一种高度流行的传染病,会导致牙周支持组织的进行性破坏。如果不治疗,它会导致牙齿脱落,影响口腔功能、美观和患者的整体生活质量。引导组织再生(GTR)和骨组织再生(BTR)是基于放置阻止上皮细胞进入缺损的膜的手术疗法,使牙周/骨细胞(包括干细胞)能够再生或恢复受影响的组织。这些疗法的成功率通常受到膜区域局部细菌定植和快速生物降解的影响,导致术后感染和膜过早破裂,限制了再生过程。本研究介绍了聚己内酯-明胶(PCL-G)电纺膜改性氧化锌纳米粒子(ZnO-NPs)的抗菌和成骨分化特性。通过与生物特性的密切关系,分析了膜的化学成分、表面粗糙度、生物降解性、润湿性和在模拟生理条件下的机械性能。用 1%、3%和 6% w/w ZnO-NPs 改性的 PCL-G 膜显著减少了四种临床相关细菌的浮游生物和生物膜形成;血清型 b、 和 。此外,这些膜具有适当的机械性能和生物降解率,可能用于临床治疗。值得注意的是,用最低浓度 ZnO-NPs(1% w/w)改性的膜刺激人骨髓间充质干细胞(BM-MSC)产生成骨标志物和钙沉积,并与人成骨细胞(hFOB)生物相容。这些结果表明,含 1% w/w ZnO-NPs 的 PCL-G 膜是 GTR/BTR 治疗的高潜力候选物,因为它们在较低 NPs 浓度下具有更好的抗菌效果,同时为骨生长创造了有利的细胞微环境。