Department of Oral and Maxillofacial Surgery, University Hospital of Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, 24105, Kiel, Germany.
Marine Science and Technology Faculty, Iskenderun Technical University, 31200, Iskenderun, Hatay, Turkey.
J Mater Sci Mater Med. 2024 Jan 29;35(1):9. doi: 10.1007/s10856-024-06778-y.
The reconstruction of bony defects in the alveolar crest poses challenges in dental practice. Guided tissue regeneration (GTR) and guided bone regeneration (GBR) procedures utilize barriers to promote bone regeneration and prevent epithelial growth. This study focuses on evaluating the antibacterial properties of marine algae-polylactic acid (PLA) composite membranes compared to commercially available collagen membranes. Marine algae (Corallina elongata, Galaxaura oblongata, Cystoseira compressa, Saragassum vulgare, and Stypopodium schimperi) were processed into powders and blended with PLA to fabricate composite membranes. Cytocompatibility assays using human periodontal ligament fibroblasts (n = 3) were performed to evaluate biocompatibility. Antibacterial effects were assessed through colony-forming units (CFU) and scanning electron microscopy (SEM) analysis of bacterial colonization on the membranes. The cytocompatibility assays demonstrated suitable biocompatibility of all marine algae-PLA composite membranes with human periodontal ligament fibroblasts. Antibacterial assessment revealed that Sargassum vulgare-PLA membranes exhibited the highest resistance to bacterial colonization, followed by Galaxaura oblongata-PLA and Cystoseira compressa-PLA membranes. SEM analysis confirmed these findings and revealed smooth surface textures for the marine algae-PLA membranes compared to the fibrous and porous structures of collagen membranes. Marine algae-PLA composite membranes show promising antibacterial properties and cytocompatibility for guided bone and tissue regeneration applications. Sargassum vulgare-PLA membranes demonstrated the highest resistance against bacterial colonization. These findings suggest that marine algae-PLA composite membranes could serve as effective biomaterials for infection control and tissue regeneration. Further in vivo validation and investigation of biodegradation properties are necessary to explore their clinical potential.
牙槽嵴骨缺损的重建在口腔医学实践中带来挑战。引导组织再生(GTR)和引导骨再生(GBR)技术利用屏障来促进骨再生和防止上皮细胞生长。本研究旨在评估海洋藻类-聚乳酸(PLA)复合膜与市售胶原膜相比的抗菌性能。将海洋藻类(珊瑚藻、长松萝、半叶马尾藻、泡叶藻和网地藻)加工成粉末并与 PLA 混合制成复合膜。通过人牙周膜成纤维细胞(n=3)的细胞相容性试验评估生物相容性。通过膜上细菌定植的菌落形成单位(CFU)和扫描电子显微镜(SEM)分析评估抗菌效果。细胞相容性试验表明,所有海洋藻类-PLA 复合膜与人牙周膜成纤维细胞具有良好的生物相容性。抗菌评估显示,泡叶藻-PLA 膜对细菌定植的抵抗力最高,其次是长松萝-PLA 和半叶马尾藻-PLA 膜。SEM 分析证实了这些发现,并显示海洋藻类-PLA 膜具有光滑的表面纹理,而胶原膜则具有纤维状和多孔结构。海洋藻类-PLA 复合膜具有良好的抗菌性能和细胞相容性,可用于引导骨和组织再生应用。泡叶藻-PLA 膜对细菌定植的抵抗力最高。这些发现表明,海洋藻类-PLA 复合膜可能是一种有效的抗感染和组织再生的生物材料。需要进一步的体内验证和生物降解性能研究来探索其临床潜力。