Suppr超能文献

用于跨域视网膜光学相干断层扫描液体分割的自训练对抗学习

Self-training adversarial learning for cross-domain retinal OCT fluid segmentation.

作者信息

Li Xiaohui, Niu Sijie, Gao Xizhan, Zhou Xueying, Dong Jiwen, Zhao Hui

机构信息

Shandong Provincial Key Laboratory of Network based Intelligent Computing, School of Information Science and Engineering, University of Jinan, Jinan, 250022, Shandong, China.

Shandong Provincial Key Laboratory of Network based Intelligent Computing, School of Information Science and Engineering, University of Jinan, Jinan, 250022, Shandong, China.

出版信息

Comput Biol Med. 2023 Mar;155:106650. doi: 10.1016/j.compbiomed.2023.106650. Epub 2023 Feb 10.

Abstract

Accurate measurements of the size, shape and volume of macular edema can provide important biomarkers to jointly assess disease progression and treatment outcome. Although many deep learning-based segmentation algorithms have achieved remarkable success in semantic segmentation, these methods have difficulty obtaining satisfactory segmentation results in retinal optical coherence tomography (OCT) fluid segmentation tasks due to low contrast, blurred boundaries, and varied distribution. Moreover, directly applying a well-trained model on one device to test the images from other devices may cause the performance degradation in the joint analysis of multi-domain OCT images. In this paper, we propose a self-training adversarial learning framework for unsupervised domain adaptation in retinal OCT fluid segmentation tasks. Specifically, we develop an image style transfer module and a fine-grained feature transfer module to reduce discrepancies in the appearance and high-level features of images from different devices. Importantly, we transfer the target images to the appearance of source images to ensure that no image information of the source domain for supervised training is lost. To capture specific features of the target domain, we design a self-training module based on a discrepancy and similarity strategy to select the images with better segmentation results from the target domain and then introduce them into the source domain for the iterative training segmentation model. Extensive experiments on two challenging datasets demonstrate the effectiveness of our proposed method. In Particular, our proposed method achieves comparable results on cross-domain retinal OCT fluid segmentation compared with the state-of-the-art methods.

摘要

准确测量黄斑水肿的大小、形状和体积可为联合评估疾病进展和治疗效果提供重要的生物标志物。尽管许多基于深度学习的分割算法在语义分割方面取得了显著成功,但由于对比度低、边界模糊和分布各异,这些方法在视网膜光学相干断层扫描(OCT)液体分割任务中难以获得令人满意的分割结果。此外,在一台设备上训练良好的模型直接用于测试来自其他设备的图像,可能会导致在多域OCT图像的联合分析中性能下降。在本文中,我们提出了一种用于视网膜OCT液体分割任务中无监督域适应的自训练对抗学习框架。具体而言,我们开发了一个图像风格迁移模块和一个细粒度特征迁移模块,以减少来自不同设备的图像在外观和高级特征上的差异。重要的是,我们将目标图像迁移到源图像的外观,以确保监督训练的源域图像信息不会丢失。为了捕捉目标域的特定特征,我们设计了一个基于差异和相似性策略的自训练模块,从目标域中选择分割结果较好的图像,然后将它们引入源域进行迭代训练分割模型。在两个具有挑战性的数据集上进行的大量实验证明了我们提出的方法的有效性。特别是,与现有最先进的方法相比,我们提出的方法在跨域视网膜OCT液体分割上取得了可比的结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验