Cao Kaizhi, Liu Yi, Zeng Xinhao, Qin Xiaoyang, Wu Renxiong, Wan Ling, Deng Bolin, Zhong Jie, Ni Guangming, Liu Yong
School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China.
Department of Ophthalmology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China.
Biomed Opt Express. 2024 Nov 21;15(12):6905-6921. doi: 10.1364/BOE.541655. eCollection 2024 Dec 1.
Accurate 3D segmentation of fluid lesions in optical coherence tomography (OCT) is crucial for the early diagnosis of diabetic macular edema (DME). However, higher-dimensional spatial complexity and limited annotated data present significant challenges for effective 3D lesion segmentation. To address these issues, we propose a novel semi-supervised strategy using a correlation mutual learning framework for segmenting 3D DME lesions from 3D OCT images. Our method integrates three key innovations: (1) a shared encoder with three parallel, slightly different decoders, exhibiting cognitive biases and calculating statistical discrepancies among the decoders to represent uncertainty in unlabeled challenging regions. (2) a global reasoning attention module integrated into the encoder's output to transfer label prior knowledge to unlabeled data; and (3) a correlation mutual learning scheme, enforcing mutual consistency between one decoder's probability map and the soft pseudo labels generated by the other decoders. Extensive experiments demonstrate that our approach outperforms state-of-the-art (SOTA) methods, highlighting the potential of our framework for tackling the complex task of 3D retinal lesion segmentation.
光学相干断层扫描(OCT)中流体病变的精确三维分割对于糖尿病性黄斑水肿(DME)的早期诊断至关重要。然而,更高维度的空间复杂性和有限的标注数据给有效的三维病变分割带来了重大挑战。为了解决这些问题,我们提出了一种新颖的半监督策略,使用相关互学习框架从三维OCT图像中分割三维DME病变。我们的方法集成了三项关键创新:(1)一个共享编码器与三个并行的、略有不同的解码器,展示认知偏差并计算解码器之间的统计差异,以表示未标记的具有挑战性区域中的不确定性。(2)一个全局推理注意力模块集成到编码器的输出中,将标签先验知识传递给未标记的数据;以及(3)一种相关互学习方案,强制一个解码器的概率图与其他解码器生成的软伪标签之间的相互一致性。大量实验表明,我们的方法优于当前最先进(SOTA)的方法,突出了我们的框架在处理三维视网膜病变分割复杂任务方面的潜力。