Suppr超能文献

具有双折射特性的粒子构成的超表面中的俘获模式控制。

Trapped mode control in metasurfaces composed of particles with the form birefringence property.

出版信息

Opt Express. 2023 Feb 13;31(4):6996-7011. doi: 10.1364/OE.483569.

Abstract

Progress in developing advanced photonic devices relies on introducing new materials, discovered physical principles, and optimal designs when constructing their components. Optical systems operating on the principles of excitation of extremely high-quality factor trapped modes (also known as the bound states in the continuum, BICs) are of great interest since they allow the implementation of laser and sensor devices with outstanding characteristics. In this paper, we discuss how one can utilize the anisotropic properties of novel materials (transition metal dichalcogenides, TMDs), particularly, the bulk molybdenum disulfide (MoS), to realize the excitation of trapped modes in dielectric metasurfaces. The bulk MoS is a thin-film structure in which the light wave behaves the same way as that in the uniaxial anisotropic material with the form birefringence property. Our metasurface is composed of an array of disk-shaped nanoparticles (resonators) made of the MoS material under the assumption that the anisotropy axis of MoS can be tilted to the rotation axis of the disks. We perform a detailed analysis of eigenwaves and scattering properties of such anisotropic resonators as well as the spectral features of the metasurface revealing dependence of the excitation conditions of the trapped mode on the anisotropy axis orientation of the MoS material used.

摘要

在开发先进的光子器件方面的进展依赖于在构建其组件时引入新材料、发现物理原理和进行优化设计。基于激发具有极高品质因数束缚态模式(也称为连续体中的束缚态,BICs)的原理运行的光学系统引起了极大的兴趣,因为它们允许实现具有出色特性的激光和传感器设备。在本文中,我们讨论了如何利用新型材料(过渡金属二卤化物,TMDs)的各向异性特性,特别是体相二硫化钼(MoS),来实现介电超表面中束缚态模式的激发。体相 MoS 是一种薄膜结构,其中光波的行为方式与具有双折射特性的单轴各向异性材料相同。我们的超表面由一系列圆盘形纳米粒子(谐振器)组成,这些谐振器由 MoS 材料制成,假设 MoS 的各向异性轴可以倾斜到圆盘的旋转轴。我们对这种各向异性谐振器的本征波和散射特性以及超表面的光谱特性进行了详细分析,揭示了所使用的 MoS 材料的各向异性轴取向对束缚态模式激发条件的影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验