Cavendish Laboratory, Department of Physics, University of Cambridge, CB3 0HE Cambridge, U.K.
Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States.
J Am Chem Soc. 2023 Mar 8;145(9):5431-5438. doi: 10.1021/jacs.2c13743. Epub 2023 Feb 24.
Singlet fission (SF), an exciton-doubling process observed in certain molecular semiconductors where two triplet excitons are generated from one singlet exciton, requires correctly tuned intermolecular coupling to allow separation of the two triplets to different molecular units. We explore this using DNA-encoded assembly of SF-capable pentacenes into discrete π-stacked constructs of defined size and geometry. Precise structural control is achieved via a combination of the DNA duplex formation between complementary single-stranded DNA and the local molecular geometry that directs the SF chromophores into a stable and predictable slip-stacked configuration, as confirmed by molecular dynamics (MD) modeling. Transient electron spin resonance spectroscopy revealed that within these DNA-assembled pentacene stacks, SF evolves via a bound triplet pair quintet state, which subsequently converts into free triplets. SF evolution via a long-lived quintet state sets specific requirements on intermolecular coupling, rendering the quintet spectrum and its zero-field-splitting parameters highly sensitive to intermolecular geometry. We have found that the experimental spectra and zero-field-splitting parameters are consistent with a slight systematic strain relative to the MD-optimized geometry. Thus, the transient electron spin resonance analysis is a powerful tool to test and refine the MD-derived structure models. DNA-encoded assembly of coupled semiconductor molecules allows controlled construction of electronically functional structures, but brings with it significant dynamic and polar disorders. Our findings here of efficient SF through quintet states demonstrate that these conditions still allow efficient and controlled semiconductor operation and point toward future opportunities for constructing functional optoelectronic systems.
单线态裂变 (SF) 是一种在某些分子半导体中观察到的激子倍增过程,其中两个三重态激子由一个单线态激子产生,需要正确调整分子间耦合,以允许两个三重态分离到不同的分子单元。我们使用 DNA 编码的能力将五苯分子组装成具有 SF 能力的离散 π 堆积结构,来探索这一点,这些结构具有明确的尺寸和几何形状。通过互补单链 DNA 之间的 DNA 双链形成与局部分子几何形状的结合来实现精确的结构控制,该局部分子几何形状将 SF 发色团引导到稳定且可预测的滑移堆积构型中,这一点通过分子动力学 (MD) 建模得到了证实。瞬态电子自旋共振光谱表明,在这些 DNA 组装的五苯堆积物中,SF 通过束缚的三重态对五重态演化,随后转化为自由三重态。通过长寿命五重态进行的 SF 演化对分子间耦合有特定要求,使五重态光谱及其零场分裂参数对分子间几何形状高度敏感。我们发现,实验光谱和零场分裂参数与 MD 优化几何形状存在轻微的系统应变一致。因此,瞬态电子自旋共振分析是测试和完善 MD 衍生结构模型的有力工具。耦合半导体分子的 DNA 编码组装允许电子功能结构的受控构建,但也带来了显著的动态和极性无序。我们在这里发现通过五重态实现有效的 SF 表明,这些条件仍然允许有效的和受控的半导体操作,并为构建功能性光电系统指明了未来的机会。