Centre for Patient Reported Outcomes Research, Institute of Applied Health Research, University of Birmingham, Birmingham, UK; Birmingham Health Partners Centre for Regulatory Science and Innovation, University of Birmingham, Birmingham, UK; Data-Enabled Medical Technologies and Devices Hub, University of Birmingham, Birmingham, UK.
Academic Unit of Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK; University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.
Lancet Digit Health. 2023 Mar;5(3):e168-e173. doi: 10.1016/S2589-7500(22)00252-7.
Integration of patient-reported outcome measures (PROMs) in artificial intelligence (AI) studies is a critical part of the humanisation of AI for health. It allows AI technologies to incorporate patients' own views of their symptoms and predict outcomes, reflecting a more holistic picture of health and wellbeing and ultimately helping patients and clinicians to make the best health-care decisions together. By positioning patient-reported outcomes (PROs) as a model input or output we propose a framework to embed PROMs within the function and evaluation of AI health care. However, the integration of PROs in AI systems presents several challenges. These challenges include (1) fragmentation of PRO data collection; (2) validation of AI systems trained and validated against clinician performance, rather than outcome data; (3) scarcity of large-scale PRO datasets; (4) inadequate selection of PROMs for the target population and inadequate infrastructure for collecting PROs; and (5) clinicians might not recognise the value of PROs and therefore not prioritise their adoption; and (6) studies involving PRO or AI frequently present suboptimal design. Notwithstanding these challenges, we propose considerations for the inclusion of PROs in AI health-care technologies to avoid promoting survival at the expense of wellbeing.
将患者报告的结果测量指标(PROMs)整合到人工智能(AI)研究中是 AI 为健康实现人性化的关键部分。它使 AI 技术能够纳入患者对自身症状的看法并预测结果,反映出更全面的健康和幸福状况,最终帮助患者和临床医生共同做出最佳的医疗决策。通过将患者报告的结果(PROs)定位为模型的输入或输出,我们提出了一个框架,将 PROMs 嵌入到 AI 医疗保健的功能和评估中。然而,PRO 整合到 AI 系统中存在几个挑战。这些挑战包括:(1)PRO 数据收集碎片化;(2)针对临床医生的表现而非结果数据进行 AI 系统训练和验证;(3)缺乏大规模的 PRO 数据集;(4)针对目标人群选择 PROMs 不充分,以及收集 PROs 的基础设施不足;(5)临床医生可能没有认识到 PROs 的价值,因此不会优先考虑采用它们;(6)涉及 PRO 或 AI 的研究通常设计不佳。尽管存在这些挑战,我们还是提出了将 PROs 纳入 AI 医疗保健技术中的考虑因素,以避免以牺牲幸福感为代价来追求生存。