Vadakkayil Aravind, Clever Caleb, Kunzler Karli N, Tan Susheng, Bloom Brian P, Waldeck David H
Chemistry Department, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
Petersen Institute of Nanoscience and Engineering, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
Nat Commun. 2023 Feb 24;14(1):1067. doi: 10.1038/s41467-023-36703-w.
Continual progress in technologies that rely on water splitting are often hampered by the slow kinetics associated with the oxygen evolution reaction (OER). Here, we show that the efficiency of top-performing catalysts can be improved, beyond typical thermodynamic considerations, through control over reaction intermediate spin alignment during electrolysis. Spin alignment is achieved using the chiral induced spin selectivity (CISS) effect and the improvement in OER manifests as an increase in Faradaic efficiency, decrease in reaction overpotential, and change in the rate determining step for chiral nanocatalysts over compositionally analogous achiral nanocatalysts. These studies illustrate that a defined spatial orientation of the nanocatalysts is not necessary to exhibit spin selectivity and therefore represent a viable platform for employing the transformative role of chirality in other reaction pathways and processes.
依赖水分解的技术的持续进步常常受到与析氧反应(OER)相关的缓慢动力学的阻碍。在这里,我们表明,通过在电解过程中控制反应中间体的自旋排列,除了典型的热力学考虑之外,性能最佳的催化剂的效率还可以得到提高。自旋排列是利用手性诱导自旋选择性(CISS)效应实现的,OER的改善表现为法拉第效率的提高、反应过电位的降低,以及手性纳米催化剂相对于组成类似的非手性纳米催化剂的速率决定步骤的变化。这些研究表明,纳米催化剂的特定空间取向对于表现出自旋选择性并非必要,因此代表了一个可行的平台,可用于在其他反应途径和过程中发挥手性的变革性作用。