Hossain Syed Imdadul, Bajrami Diellza, Sportelli Maria Chiara, Picca Rosaria Anna, Volpe Annalisa, Gaudiuso Caterina, Ancona Antonio, Gentile Luigi, Palazzo Gerardo, Ditaranto Nicoletta, Mizaikoff Boris, Cioffi Nicola
Chemistry Department, University of Bari "Aldo Moro", Via E. Orabona 4, 70126 Bari, Italy.
CSGI (Center for Colloid and Surface Science) c/o, Department of Chemistry, Via Orabona 4, 70125 Bari, Italy.
Antibiotics (Basel). 2023 Jan 17;12(2):194. doi: 10.3390/antibiotics12020194.
Unlike other antimicrobial agents, Ag-based composites are stable and currently widely used as broad spectral additives, fighting microbial biofilms and other biological threats. The goal of the present study is to develop a green, multifunctional, and robust antibiofilm water-insoluble coating, inhibiting histamine-producing biofilms. Herein, laser-ablated Ag NPs (L-Ag NPs) were incorporated into and onto a montmorillonite (MMT) surface layer with a simple wet chemical method, provided that the electrostatic interaction between L-Ag NPs and MMT clay led to the formation of L-Ag/MMT nanoantimicrobials (NAMs). The use of MMT support can facilitate handling Ag NPs in industrial applications. The Ag/MMT composite was characterized with transmission electron microscopy (TEM) and scanning electron microscopy (SEM), which confirmed the entrapment of L-Ag NPs into MMT clay. The surface chemical composition was assessed with X-ray photoelectron spectroscopy, proving that Ag NPs were in contact with and deposited onto the surface of MMT. The characteristic L-Ag/MMT band was investigated with UV-vis spectroscopy. Following that, the L-Ag/MMT composite was embedded into a biosafe water-insoluble beeswax agent with a spin coating technique. The antimicrobial ion release kinetic profile of the L-Ag/MMT/beeswax coating through an electrothermal atomic absorption spectroscopy (ETAAS) study supported the controlled release of Ag ions, reaching a plateau at 420 ± 80 nM, which is safe from the point of view of Ag toxicity. Microbial biofilm growth inhibition was assessed with real-time in situ Fourier transform infrared attenuated total reflection spectroscopy (FTIR-ATR) in a flow cell assembly over 32 h. The study was further supported by optical density (OD) measurements and SEM on bacteria incubated in the presence of the L-Ag/MMT/beeswax coating.
与其他抗菌剂不同,银基复合材料性能稳定,目前广泛用作广谱添加剂,可对抗微生物生物膜和其他生物威胁。本研究的目的是开发一种绿色、多功能且坚固的抗生物膜水不溶性涂层,以抑制产生组胺的生物膜。在此,通过简单的湿化学方法将激光烧蚀银纳米颗粒(L-Ag NPs)引入蒙脱石(MMT)表面层并使其附着在表面,前提是L-Ag NPs与MMT粘土之间的静电相互作用导致形成L-Ag/MMT纳米抗菌剂(NAMs)。使用MMT载体有助于在工业应用中处理银纳米颗粒。用透射电子显微镜(TEM)和扫描电子显微镜(SEM)对Ag/MMT复合材料进行了表征,证实了L-Ag NPs被截留在MMT粘土中。用X射线光电子能谱评估了表面化学成分,证明银纳米颗粒与MMT表面接触并沉积在其上。用紫外可见光谱研究了L-Ag/MMT的特征谱带。随后,采用旋涂技术将L-Ag/MMT复合材料嵌入生物安全的水不溶性蜂蜡制剂中。通过电热原子吸收光谱(ETAAS)研究得到的L-Ag/MMT/蜂蜡涂层的抗菌离子释放动力学曲线支持了银离子的控释,在420±80 nM时达到平稳期,从银毒性的角度来看是安全的。在流动池组件中通过实时原位傅里叶变换红外衰减全反射光谱(FTIR-ATR)在32小时内评估了微生物生物膜的生长抑制情况。在L-Ag/MMT/蜂蜡涂层存在下对细菌进行的光密度(OD)测量和SEM进一步支持了该研究。