Álvarez-Martínez Francisco Javier, Borrás-Rocher Fernando, Micol Vicente, Barrajón-Catalán Enrique
Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (UMH), 03202 Elche, Spain.
Statistics and Operative Research Department, UMH, Avda, Universidad s/n, 03202 Elche, Spain.
Antibiotics (Basel). 2023 Feb 4;12(2):327. doi: 10.3390/antibiotics12020327.
Reviews have traditionally been based on extensive searches of the available bibliography on the topic of interest. However, this approach is frequently influenced by the authors' background, leading to possible selection bias. Artificial intelligence applied to natural language processing (NLP) is a powerful tool that can be used for systematic reviews by speeding up the process and providing more objective results, but its use in scientific literature reviews is still scarce. This manuscript addresses this challenge by developing a reproducible tool that can be used to develop objective reviews on almost every topic. This tool has been used to review the antibacterial activity of genus plant extracts as proof of concept, providing a comprehensive and objective state of the art on this topic based on the analysis of 1601 research manuscripts and 136 patents. Data were processed using a publicly available Jupyter Notebook in Google Collaboratory here. NLP, when applied to the study of antibacterial activity of plants, is able to recover the main scientific manuscripts and patents related to the topic, avoiding any biases. The NLP-assisted literature review reveals that and are the first and second most studied species respectively. Leaves and fruits are the most commonly used plant parts and methanol, followed by butanol and water, the most widely used solvents to prepare plant extracts. Furthermore, followed by are the most studied bacterial species, which are also the most susceptible bacteria in all studied assays. This new tool aims to change the actual paradigm of the review of scientific literature to make the process more efficient, reliable, and reproducible, according to Open Science standards.
传统上,综述是基于对感兴趣主题的现有文献进行广泛检索。然而,这种方法经常受到作者背景的影响,导致可能的选择偏差。应用于自然语言处理(NLP)的人工智能是一种强大的工具,可用于系统综述,通过加快过程并提供更客观的结果,但它在科学文献综述中的应用仍然很少。本手稿通过开发一种可重复使用的工具来应对这一挑战,该工具可用于对几乎每个主题进行客观综述。该工具已被用于综述植物提取物属的抗菌活性作为概念验证,基于对1601篇研究手稿和136项专利的分析,提供了关于该主题的全面且客观的最新情况。数据在此处使用谷歌协作平台上公开可用的Jupyter Notebook进行处理。当NLP应用于植物抗菌活性研究时,能够检索与该主题相关的主要科学手稿和专利,避免任何偏差。NLP辅助的文献综述表明,[具体植物名称1]和[具体植物名称2]分别是研究最多的第一和第二植物物种。叶子和果实是最常用的植物部位,甲醇是制备植物提取物最广泛使用的溶剂,其次是丁醇和水。此外,[具体细菌名称1]其次是[具体细菌名称2]是研究最多的细菌物种,它们也是所有研究试验中最敏感的细菌。根据开放科学标准,这个新工具旨在改变科学文献综述的实际模式,使过程更高效、可靠且可重复。