Suppr超能文献

一种用于胃肠道检查结果检测与分类的新方法:基于深度学习的混合堆叠集成模型。

A New Approach for Gastrointestinal Tract Findings Detection and Classification: Deep Learning-Based Hybrid Stacking Ensemble Models.

作者信息

Sivari Esra, Bostanci Erkan, Guzel Mehmet Serdar, Acici Koray, Asuroglu Tunc, Ercelebi Ayyildiz Tulin

机构信息

Department of Computer Engineering, Cankiri Karatekin University, Cankiri 18100, Turkey.

Department of Computer Engineering, Ankara University, Ankara 06830, Turkey.

出版信息

Diagnostics (Basel). 2023 Feb 14;13(4):720. doi: 10.3390/diagnostics13040720.

Abstract

Endoscopic procedures for diagnosing gastrointestinal tract findings depend on specialist experience and inter-observer variability. This variability can cause minor lesions to be missed and prevent early diagnosis. In this study, deep learning-based hybrid stacking ensemble modeling has been proposed for detecting and classifying gastrointestinal system findings, aiming at early diagnosis with high accuracy and sensitive measurements and saving workload to help the specialist and objectivity in endoscopic diagnosis. In the first level of the proposed bi-level stacking ensemble approach, predictions are obtained by applying 5-fold cross-validation to three new CNN models. A machine learning classifier selected at the second level is trained according to the obtained predictions, and the final classification result is reached. The performances of the stacking models were compared with the performances of the deep learning models, and McNemar's statistical test was applied to support the results. According to the experimental results, stacking ensemble models performed with a significant difference with 98.42% ACC and 98.19% MCC in the KvasirV2 dataset and 98.53% ACC and 98.39% MCC in the HyperKvasir dataset. This study is the first to offer a new learning-oriented approach that efficiently evaluates CNN features and provides objective and reliable results with statistical testing compared to state-of-the-art studies on the subject. The proposed approach improves the performance of deep learning models and outperforms the state-of-the-art studies in the literature.

摘要

用于诊断胃肠道病变的内镜检查程序依赖于专家经验和观察者间的差异。这种差异可能导致遗漏微小病变并妨碍早期诊断。在本研究中,提出了基于深度学习的混合堆叠集成建模方法来检测和分类胃肠道系统病变,旨在实现高精度和灵敏测量的早期诊断,并节省工作量以辅助专家进行内镜诊断并提高诊断的客观性。在所提出的双层堆叠集成方法的第一层中,通过对三个新的卷积神经网络(CNN)模型应用五折交叉验证来获得预测结果。根据获得的预测结果训练在第二层中选择的机器学习分类器,从而得出最终分类结果。将堆叠模型的性能与深度学习模型的性能进行比较,并应用麦克尼马尔统计检验来支持结果。根据实验结果,堆叠集成模型在KvasirV2数据集中的准确率(ACC)为98.42%,马修斯相关系数(MCC)为98.19%,在HyperKvasir数据集中ACC为98.53%,MCC为98.39%,表现出显著差异。与该主题的现有研究相比,本研究首次提供了一种新的面向学习的方法,该方法能够有效评估CNN特征,并通过统计检验提供客观可靠的结果。所提出的方法提高了深度学习模型的性能,优于文献中的现有研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39ee/9954881/81ddeac04d09/diagnostics-13-00720-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验