文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Gastric Cancer Detection with Ensemble Learning on Digital Pathology: Use Case of Gastric Cancer on GasHisSDB Dataset.

作者信息

Mudavadkar Govind Rajesh, Deng Mo, Al-Heejawi Salah Mohammed Awad, Arora Isha Hemant, Breggia Anne, Ahmad Bilal, Christman Robert, Ryan Stephen T, Amal Saeed

机构信息

College of Engineering, Northeastern University, Boston, MA 02115, USA.

Khoury College of Computer Sciences, Northeastern University, Boston, MA 02115, USA.

出版信息

Diagnostics (Basel). 2024 Aug 12;14(16):1746. doi: 10.3390/diagnostics14161746.


DOI:10.3390/diagnostics14161746
PMID:39202233
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11354078/
Abstract

Gastric cancer has become a serious worldwide health concern, emphasizing the crucial importance of early diagnosis measures to improve patient outcomes. While traditional histological image analysis is regarded as the clinical gold standard, it is labour intensive and manual. In recognition of this problem, there has been a rise in interest in the use of computer-aided diagnostic tools to help pathologists with their diagnostic efforts. In particular, deep learning (DL) has emerged as a promising solution in this sector. However, current DL models are still restricted in their ability to extract extensive visual characteristics for correct categorization. To address this limitation, this study proposes the use of ensemble models, which incorporate the capabilities of several deep-learning architectures and use aggregate knowledge of many models to improve classification performance, allowing for more accurate and efficient gastric cancer detection. To determine how well these proposed models performed, this study compared them with other works, all of which were based on the Gastric Histopathology Sub-Size Images Database, a publicly available dataset for gastric cancer. This research demonstrates that the ensemble models achieved a high detection accuracy across all sub-databases, with an average accuracy exceeding 99%. Specifically, ResNet50, VGGNet, and ResNet34 performed better than EfficientNet and VitNet. For the 80 × 80-pixel sub-database, ResNet34 exhibited an accuracy of approximately 93%, VGGNet achieved 94%, and the ensemble model excelled with 99%. In the 120 × 120-pixel sub-database, the ensemble model showed 99% accuracy, VGGNet 97%, and ResNet50 approximately 97%. For the 160 × 160-pixel sub-database, the ensemble model again achieved 99% accuracy, VGGNet 98%, ResNet50 98%, and EfficientNet 92%, highlighting the ensemble model's superior performance across all resolutions. Overall, the ensemble model consistently provided an accuracy of 99% across the three sub-pixel categories. These findings show that ensemble models may successfully detect critical characteristics from smaller patches and achieve high performance. The findings will help pathologists diagnose gastric cancer using histopathological images, leading to earlier identification and higher patient survival rates.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b5e/11354078/342f15d6394a/diagnostics-14-01746-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b5e/11354078/7c6917be0cd4/diagnostics-14-01746-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b5e/11354078/cfd9d56af1a1/diagnostics-14-01746-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b5e/11354078/f68e9bf35caa/diagnostics-14-01746-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b5e/11354078/993b1f96245f/diagnostics-14-01746-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b5e/11354078/aeef91a7ab48/diagnostics-14-01746-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b5e/11354078/e023f2cea9aa/diagnostics-14-01746-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b5e/11354078/c135f6653103/diagnostics-14-01746-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b5e/11354078/20c198d43597/diagnostics-14-01746-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b5e/11354078/b19de3855631/diagnostics-14-01746-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b5e/11354078/342f15d6394a/diagnostics-14-01746-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b5e/11354078/7c6917be0cd4/diagnostics-14-01746-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b5e/11354078/cfd9d56af1a1/diagnostics-14-01746-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b5e/11354078/f68e9bf35caa/diagnostics-14-01746-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b5e/11354078/993b1f96245f/diagnostics-14-01746-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b5e/11354078/aeef91a7ab48/diagnostics-14-01746-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b5e/11354078/e023f2cea9aa/diagnostics-14-01746-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b5e/11354078/c135f6653103/diagnostics-14-01746-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b5e/11354078/20c198d43597/diagnostics-14-01746-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b5e/11354078/b19de3855631/diagnostics-14-01746-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b5e/11354078/342f15d6394a/diagnostics-14-01746-g010.jpg

相似文献

[1]
Gastric Cancer Detection with Ensemble Learning on Digital Pathology: Use Case of Gastric Cancer on GasHisSDB Dataset.

Diagnostics (Basel). 2024-8-12

[2]
Histopathological Gastric Cancer Detection on GasHisSDB Dataset Using Deep Ensemble Learning.

Diagnostics (Basel). 2023-5-18

[3]
GasHisSDB: A new gastric histopathology image dataset for computer aided diagnosis of gastric cancer.

Comput Biol Med. 2022-3

[4]
A comparative study of gastric histopathology sub-size image classification: From linear regression to visual transformer.

Front Med (Lausanne). 2022-12-7

[5]
Non-annotated renal histopathological image analysis with deep ensemble learning.

Quant Imaging Med Surg. 2023-9-1

[6]
Ensemble Deep Learning-Based Image Classification for Breast Cancer Subtype and Invasiveness Diagnosis from Whole Slide Image Histopathology.

Cancers (Basel). 2024-6-14

[7]
Breast Cancer Classification through Meta-Learning Ensemble Technique Using Convolution Neural Networks.

Diagnostics (Basel). 2023-6-30

[8]
Breast Cancer Detection with an Ensemble of Deep Learning Networks Using a Consensus-Adaptive Weighting Method.

J Imaging. 2023-11-13

[9]
Enhancing early breast cancer diagnosis through automated microcalcification detection using an optimized ensemble deep learning framework.

PeerJ Comput Sci. 2024-5-29

[10]
Breast Cancer Histopathology Image Classification Using an Ensemble of Deep Learning Models.

Sensors (Basel). 2020-8-5

引用本文的文献

[1]
Application of deep learning models in gastric cancer pathology image analysis: a systematic scoping review.

BMC Cancer. 2025-8-1

[2]
ViSwNeXtNet Deep Patch-Wise Ensemble of Vision Transformers and ConvNeXt for Robust Binary Histopathology Classification.

Diagnostics (Basel). 2025-6-13

[3]
Interpretable deep learning for gastric cancer detection: a fusion of AI architectures and explainability analysis.

Front Immunol. 2025-5-29

[4]
An interpretable framework for gastric cancer classification using multi-channel attention mechanisms and transfer learning approach on histopathology images.

Sci Rep. 2025-4-16

本文引用的文献

[1]
GIT-Net: An Ensemble Deep Learning-Based GI Tract Classification of Endoscopic Images.

Bioengineering (Basel). 2023-7-5

[2]
Histopathological Gastric Cancer Detection on GasHisSDB Dataset Using Deep Ensemble Learning.

Diagnostics (Basel). 2023-5-18

[3]
A New Approach for Gastrointestinal Tract Findings Detection and Classification: Deep Learning-Based Hybrid Stacking Ensemble Models.

Diagnostics (Basel). 2023-2-14

[4]
Deep convolutional neural networks with ensemble learning and transfer learning for automated detection of gastrointestinal diseases.

Comput Biol Med. 2022-11

[5]
Performance and usability testing of an automated tool for detection of peripheral artery disease using electronic health records.

Sci Rep. 2022-8-3

[6]
Artificial Intelligence for Upper Gastrointestinal Endoscopy: A Roadmap from Technology Development to Clinical Practice.

Diagnostics (Basel). 2022-5-21

[7]
GasHisSDB: A new gastric histopathology image dataset for computer aided diagnosis of gastric cancer.

Comput Biol Med. 2022-3

[8]
Gastrointestinal cancer classification and prognostication from histology using deep learning: Systematic review.

Eur J Cancer. 2021-9

[9]
Artificial intelligence for cancer detection of the upper gastrointestinal tract.

Dig Endosc. 2021-1

[10]
Detection of multiple lesions of gastrointestinal tract for endoscopy using artificial intelligence model: a pilot study.

Surg Endosc. 2021-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索