Suppr超能文献

嵌入随机变分推理损失函数的轻量级深度神经网络用于人体姿势的快速检测

Lightweight Deep Neural Network Embedded with Stochastic Variational Inference Loss Function for Fast Detection of Human Postures.

作者信息

Hsu Feng-Shuo, Su Zi-Jun, Kao Yamin, Tsai Sen-Wei, Lin Ying-Chao, Tu Po-Hsun, Gong Cihun-Siyong Alex, Chen Chien-Chang

机构信息

Bio-Microsystems Integration Laboratory, Department of Biomedical Sciences and Engineering, National Central University, Taoyuan 320317, Taiwan.

Department of Psychiatry, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427213, Taiwan.

出版信息

Entropy (Basel). 2023 Feb 11;25(2):336. doi: 10.3390/e25020336.

Abstract

Fusing object detection techniques and stochastic variational inference, we proposed a new scheme for lightweight neural network models, which could simultaneously reduce model sizes and raise the inference speed. This technique was then applied in fast human posture identification. The integer-arithmetic-only algorithm and the feature pyramid network were adopted to reduce the computational complexity in training and to capture features of small objects, respectively. Features of sequential human motion frames (i.e., the centroid coordinates of bounding boxes) were extracted by the self-attention mechanism. With the techniques of Bayesian neural network and stochastic variational inference, human postures could be promptly classified by fast resolving of the Gaussian mixture model for human posture classification. The model took instant centroid features as inputs and indicated possible human postures in the probabilistic maps. Our model had better overall performance than the baseline model ResNet in mean average precision (32.5 vs. 34.6), inference speed (27 vs. 48 milliseconds), and model size (46.2 vs. 227.8 MB). The model could also alert a suspected human falling event about 0.66 s in advance.

摘要

我们融合目标检测技术和随机变分推断,提出了一种用于轻量级神经网络模型的新方案,该方案可以同时减小模型大小并提高推理速度。然后将该技术应用于快速人体姿态识别。分别采用仅整数运算的算法和特征金字塔网络来降低训练中的计算复杂度并捕捉小物体的特征。通过自注意力机制提取连续人体运动帧的特征(即边界框的质心坐标)。借助贝叶斯神经网络和随机变分推断技术,通过快速求解用于人体姿态分类的高斯混合模型,可以迅速对人体姿态进行分类。该模型将即时质心特征作为输入,并在概率图中指示可能的人体姿态。在平均精度均值(32.5对34.6)、推理速度(27对48毫秒)和模型大小(46.2对227.8MB)方面,我们的模型比基线模型ResNet具有更好的整体性能。该模型还可以提前约0.66秒发出疑似人体跌倒事件的警报。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f3c2/9955849/fe9303d75738/entropy-25-00336-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验