Suppr超能文献

通过代谢组学分析鉴定丝状线虫捕食真菌中真菌特异性赖氨酸生物合成途径的作用。

Roles of the Fungal-Specific Lysine Biosynthetic Pathway in the Nematode-Trapping Fungus Identified through Metabolomics Analyses.

作者信息

Lu Hengqian, Wang Shuai, Gu Tiantian, Sun Liangyin, Wang Yongzhong

机构信息

School of Life Sciences, Anhui University, Hefei 230601, China.

Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, China.

出版信息

J Fungi (Basel). 2023 Feb 5;9(2):206. doi: 10.3390/jof9020206.

Abstract

In higher fungi, lysine is biosynthesized via the α-aminoadipate (AAA) pathway, which differs from plants, bacteria, and lower fungi. The differences offer a unique opportunity to develop a molecular regulatory strategy for the biological control of plant parasitic nematodes, based on nematode-trapping fungi. In this study, in the nematode-trapping fungus model , we characterized the core gene in the AAA pathway, encoding α-aminoadipate reductase (), via sequence analyses and through comparing the growth, and biochemical and global metabolic profiles of the wild-type and knockout strains. not only has α-aminoadipic acid reductase activity, which serves fungal L-lysine biosynthesis, but it also is a core gene of the non-ribosomal peptides biosynthetic gene cluster. Compared with WT, the growth rate, conidial production, number of predation rings formed, and nematode feeding rate of the Δ strain were decreased by 40-60%, 36%, 32%, and 52%, respectively. Amino acid metabolism, the biosynthesis of peptides and analogues, phenylpropanoid and polyketide biosynthesis, and lipid metabolism and carbon metabolism were metabolically reprogrammed in the Δ strains. The disruption of perturbed the biosynthesis of intermediates in the lysine metabolism pathway, then reprogrammed amino acid and amino acid-related secondary metabolism, and finally, it impeded the growth and nematocidal ability of . This study provides an important reference for uncovering the role of amino acid-related primary and secondary metabolism in nematode capture by nematode-trapping fungi, and confirms the feasibility of as a molecular target to regulate nematode-trapping fungi to biocontrol nematodes.

摘要

在高等真菌中,赖氨酸通过α-氨基己二酸(AAA)途径生物合成,该途径与植物、细菌和低等真菌不同。这些差异为基于捕食线虫真菌开发植物寄生线虫生物防治的分子调控策略提供了独特的机会。在本研究中,在捕食线虫真菌模型中,我们通过序列分析以及比较野生型和敲除菌株的生长、生化和全局代谢谱,对AAA途径中的核心基因进行了表征,该基因编码α-氨基己二酸还原酶()。不仅具有为真菌L-赖氨酸生物合成提供服务的α-氨基己二酸还原酶活性,而且它还是非核糖体肽生物合成基因簇的核心基因。与野生型相比,Δ菌株的生长速率、分生孢子产量、形成的捕食环数量和线虫摄食率分别降低了40 - 60%、36%、32%和52%。在Δ菌株中,氨基酸代谢、肽及其类似物的生物合成、苯丙烷类和聚酮类生物合成以及脂质代谢和碳代谢发生了代谢重编程。的破坏扰乱了赖氨酸代谢途径中中间体的生物合成,进而重编程了氨基酸和与氨基酸相关的次生代谢,最终阻碍了的生长和杀线虫能力。本研究为揭示氨基酸相关的初级和次级代谢在捕食线虫真菌捕获线虫中的作用提供了重要参考,并证实了作为调控捕食线虫真菌生物防治线虫的分子靶点的可行性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ac9/9963897/2898e2c37cb0/jof-09-00206-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验