State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan Universitygrid.440773.3, Kunming, People's Republic of China.
Microbiol Spectr. 2022 Apr 27;10(2):e0027522. doi: 10.1128/spectrum.00275-22. Epub 2022 Mar 24.
() is a typical nematode-trapping (NT) fungus that can capture nematodes by producing adhesive networks. Peroxisomes are single membrane-bound organelles that perform multiple physiological functions in filamentous fungi. Peroxisome biogenesis proteins are encoded by genes, and the functions of genes in and other NT fungi remain largely unknown. Here, our results demonstrated that two genes ( and ) are essential for mycelial growth, conidiation, fatty acid utilization, stress tolerance, and pathogenicity in . and knockout resulted in a failure to produce traps, conidia, peroxisomes, and Woronin bodies and damaged cell walls, reduced autophagosome levels, and increased lipid droplet size. Transcriptome data analysis showed that and deletion resulted in the upregulation of the proteasome, membranes, ribosomes, DNA replication, and cell cycle functions, and the downregulation of MAPK signaling and nitrogen metabolism. In summary, our results provide novel insights into the functions of genes in the growth, development, and pathogenicity of and contribute to the elucidation of the regulatory mechanism of peroxisomes in trap formation and lifestyle switching in NT fungi. Nematode-trapping (NT) fungi are important resources for the biological control of plant-parasitic nematodes. They are widely distributed in various ecological environments and capture nematodes by producing unique predatory organs (traps). However, the molecular mechanisms of trap formation and lifestyle switching in NT fungi are still unclear. Here, we provided experimental evidence that the and genes could regulate mycelial growth and development, trap formation, and nematode predation of . We further analyzed the global transcription level changes of wild-type and mutant strains using RNA-seq. This study highlights the important role of peroxisome biogenesis genes in vegetative growth, conidiation, trap formation, and pathogenicity, which contribute to probing the mechanism of organelle development and trap formation of NT fungi and lays a foundation for developing high-efficiency nematode biocontrol agents.
()是一种典型的捕食线虫(NT)真菌,能够通过产生粘性网络来捕获线虫。过氧化物酶体是一种具有单层膜的细胞器,在丝状真菌中具有多种生理功能。过氧化物酶体生物发生蛋白由 基因编码,而 基因和其他 NT 真菌中的 基因的功能在很大程度上仍然未知。在这里,我们的结果表明,两个 基因(和 )对于 的菌丝生长、分生孢子形成、脂肪酸利用、应激耐受和致病性是必需的。和 敲除导致无法产生陷阱、分生孢子、过氧化物体和沃罗宁体,破坏细胞壁,降低自噬体水平,增加脂滴大小。转录组数据分析表明,和 缺失导致蛋白酶体、膜、核糖体、DNA 复制和细胞周期功能上调,以及 MAPK 信号和氮代谢下调。总之,我们的结果为 基因在 的生长、发育和致病性中的功能提供了新的见解,并有助于阐明过氧化物体在 NT 真菌中陷阱形成和生活方式转换中的调控机制。捕食线虫(NT)真菌是植物寄生线虫生物防治的重要资源。它们广泛分布于各种生态环境中,通过产生独特的捕食器官(陷阱)来捕获线虫。然而,NT 真菌中陷阱形成和生活方式转换的分子机制仍不清楚。在这里,我们提供了实验证据,证明 基因和 基因可以调节 的菌丝生长和发育、陷阱形成和线虫捕食。我们进一步使用 RNA-seq 分析了野生型和突变菌株的全局转录水平变化。这项研究强调了过氧化物酶体生物发生基因在营养生长、分生孢子形成、陷阱形成和致病性中的重要作用,有助于探究 NT 真菌细胞器发育和陷阱形成的机制,并为开发高效的线虫生物防治剂奠定了基础。