Suppr超能文献

基于全基因组测序数据的大肠埃希菌头孢吡肟药敏性预测机器学习模型。

Machine-Learning Model for Prediction of Cefepime Susceptibility in Escherichia coli from Whole-Genome Sequencing Data.

机构信息

Vanderbilt University Medical Center, Nashville, Tennesee, USA.

Next Gen Diagnostics, LLC, Cambridge, United Kingdom.

出版信息

J Clin Microbiol. 2023 Mar 23;61(3):e0143122. doi: 10.1128/jcm.01431-22. Epub 2023 Feb 22.

Abstract

The declining cost of performing bacterial whole-genome sequencing (WGS) coupled with the availability of large libraries of sequence data for well-characterized isolates have enabled the application of machine-learning (ML) methods to the development of nonlinear sequence-based predictive models. We tested the ML-based model developed by Next Gen Diagnostics for prediction of cefepime phenotypic susceptibility results in Escherichia coli. A cohort of 100 isolates of E. coli recovered from urine ( = 77) and blood ( = 23) cultures were used. The cefepime MIC was determined in triplicate by reference broth microdilution and classified as susceptible (MIC of ≤2 μg/mL) or not susceptible (MIC of ≥4 μg/mL) using the 2022 Clinical and Laboratory Standards Institute breakpoints. Five isolates generated both susceptible and not susceptible MIC results, yielding categorical agreement of 95% for the reference method to itself. Categorical agreement of ML to MIC interpretations was 97%, with 2 very major (false, susceptible) and 1 major (false, not susceptible) errors. One very major error occurred for an isolate with (MIC mode, ≥32 μg/mL) and one for an isolate with for which the MIC cefepime mode was 4 μg/mL. One major error was for an isolate with but with a MIC mode of 2 μg/mL. These preliminary data demonstrated performance of ML for a clinically important antimicrobial-species pair at a caliber similar to phenotypic methods, encouraging wider development of sequence-based susceptibility prediction and its validation and use in clinical practice.

摘要

细菌全基因组测序(WGS)成本的降低,加上大量经过充分特征描述的分离株序列数据的可用性,使得机器学习(ML)方法能够应用于开发基于序列的非线性预测模型。我们测试了 Next Gen Diagnostics 开发的基于 ML 的模型,用于预测大肠埃希菌中头孢吡肟表型药敏结果。使用了从尿液( = 77)和血液( = 23)培养物中回收的 100 株大肠埃希菌分离株的队列。头孢吡肟 MIC 通过参考肉汤微量稀释法重复测定,并使用 2022 年临床和实验室标准协会的折点分类为敏感(MIC ≤2 μg/mL)或不敏感(MIC ≥4 μg/mL)。有 5 株分离物产生了敏感和不敏感的 MIC 结果,参考方法本身的分类一致性为 95%。ML 与 MIC 解释的分类一致性为 97%,有 2 个非常大(错误,敏感)和 1 个主要(错误,不敏感)错误。一个非常大的错误发生在一个 MIC 模式为 (MIC 模式,≥32 μg/mL)的分离物上,另一个发生在一个 MIC 模式为 4 μg/mL 的分离物上。一个主要错误发生在一个 MIC 模式为 2 μg/mL 的分离物上。这些初步数据表明,对于一种临床重要的抗菌药物-物种对,ML 的性能与表型方法相似,这鼓励了更广泛地开发基于序列的药敏预测及其验证,并将其应用于临床实践。

相似文献

引用本文的文献

2
Advancements in AI-driven drug sensitivity testing research.人工智能驱动的药物敏感性测试研究进展。
Front Cell Infect Microbiol. 2025 May 2;15:1560569. doi: 10.3389/fcimb.2025.1560569. eCollection 2025.

本文引用的文献

9
Clinical Impact of Revised Cefepime Breakpoint in Patients With Bacteremia.修订后的头孢吡肟折点对菌血症患者的临床影响
Open Forum Infect Dis. 2019 Jul 28;6(8):ofz341. doi: 10.1093/ofid/ofz341. eCollection 2019 Aug.
10
Using Genomics to Track Global Antimicrobial Resistance.利用基因组学追踪全球抗菌素耐药性。
Front Public Health. 2019 Sep 4;7:242. doi: 10.3389/fpubh.2019.00242. eCollection 2019.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验