Suppr超能文献

精细的时间大脑网络结构在男性和女性中的模块化和本地化方式不同:来自新颖的可解释性框架的见解。

Fine temporal brain network structure modularizes and localizes differently in men and women: insights from a novel explainability framework.

机构信息

Computational Science and Engineering, Georgia Institute of Technology, North Ave, 30332, GA, United States.

Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), 55 Park Pl NE, 30303, GA, United States.

出版信息

Cereb Cortex. 2023 May 9;33(10):5817-5828. doi: 10.1093/cercor/bhac462.

Abstract

Deep learning has become an effective tool for classifying biological sex based on functional magnetic resonance imaging (fMRI). However, research on what features within the brain are most relevant to this classification is still lacking. Model interpretability has become a powerful way to understand "black box" deep-learning models, and select features within the input data that are most relevant to the correct classification. However, very little work has been done employing these methods to understand the relationship between the temporal dimension of functional imaging signals and the classification of biological sex. Consequently, less attention has been paid to rectifying problems and limitations associated with feature explanation models, e.g. underspecification and instability. In this work, we first provide a methodology to limit the impact of underspecification on the stability of the measured feature importance. Then, using intrinsic connectivity networks from fMRI data, we provide a deep exploration of sex differences among functional brain networks. We report numerous conclusions, including activity differences in the visual and cognitive domains and major connectivity differences.

摘要

深度学习已成为基于功能磁共振成像(fMRI)对生物性别进行分类的有效工具。然而,对于大脑中哪些特征与这种分类最相关的研究仍然缺乏。模型可解释性已成为理解“黑盒”深度学习模型并选择与正确分类最相关的输入数据特征的强大方法。然而,很少有工作利用这些方法来理解功能成像信号的时间维度与生物性别分类之间的关系。因此,对于特征解释模型(例如,欠指定和不稳定性)相关的问题和局限性的纠正关注较少。在这项工作中,我们首先提供了一种方法来限制欠指定对所测量特征重要性稳定性的影响。然后,我们使用 fMRI 数据的内在连通性网络,对功能大脑网络中的性别差异进行了深入探讨。我们报告了许多结论,包括视觉和认知领域的活动差异以及主要的连通性差异。

相似文献

4
fMRI volume classification using a 3D convolutional neural network robust to shifted and scaled neuronal activations.
Neuroimage. 2020 Dec;223:117328. doi: 10.1016/j.neuroimage.2020.117328. Epub 2020 Sep 5.
5
Sparse temporally dynamic resting-state functional connectivity networks for early MCI identification.
Brain Imaging Behav. 2016 Jun;10(2):342-56. doi: 10.1007/s11682-015-9408-2.
6
Spatio-temporal directed acyclic graph learning with attention mechanisms on brain functional time series and connectivity.
Med Image Anal. 2022 Apr;77:102370. doi: 10.1016/j.media.2022.102370. Epub 2022 Jan 30.
7
A visual encoding model based on deep neural networks and transfer learning for brain activity measured by functional magnetic resonance imaging.
J Neurosci Methods. 2019 Sep 1;325:108318. doi: 10.1016/j.jneumeth.2019.108318. Epub 2019 Jun 27.
8
Constructing fine-granularity functional brain network atlases via deep convolutional autoencoder.
Med Image Anal. 2017 Dec;42:200-211. doi: 10.1016/j.media.2017.08.005. Epub 2017 Aug 18.
10
Brain network connectivity feature extraction using deep learning for Alzheimer's disease classification.
Neurosci Lett. 2022 Jun 21;782:136673. doi: 10.1016/j.neulet.2022.136673. Epub 2022 May 2.

引用本文的文献

1
A simple but tough-to-beat baseline for fMRI time-series classification.
Neuroimage. 2024 Dec 1;303:120909. doi: 10.1016/j.neuroimage.2024.120909. Epub 2024 Nov 6.
2
Searching Reproducible Brain Features using NeuroMark: Templates for Different Age Populations and Imaging Modalities.
Neuroimage. 2024 Apr 15;292:120617. doi: 10.1016/j.neuroimage.2024.120617. Epub 2024 Apr 16.

本文引用的文献

1
Multi-spatial-scale dynamic interactions between functional sources reveal sex-specific changes in schizophrenia.
Netw Neurosci. 2022 Jun 1;6(2):357-381. doi: 10.1162/netn_a_00196. eCollection 2022 Jun.
3
Measuring Sex and Gender in Aging and Alzheimer's Research: Results of a National Survey.
J Gerontol B Psychol Sci Soc Sci. 2022 Jun 1;77(6):1005-1016. doi: 10.1093/geronb/gbab226.
5
Deep learning for sex classification in resting-state and task functional brain networks from the UK Biobank.
Neuroimage. 2021 Nov 1;241:118409. doi: 10.1016/j.neuroimage.2021.118409. Epub 2021 Jul 20.
6
Brain age prediction: A comparison between machine learning models using region- and voxel-based morphometric data.
Hum Brain Mapp. 2021 Jun 1;42(8):2332-2346. doi: 10.1002/hbm.25368. Epub 2021 Mar 19.
8
NeuroMark: An automated and adaptive ICA based pipeline to identify reproducible fMRI markers of brain disorders.
Neuroimage Clin. 2020;28:102375. doi: 10.1016/j.nicl.2020.102375. Epub 2020 Aug 11.
9
Are there sex differences in brain activity during long-term memory? A systematic review and fMRI activation likelihood estimation meta-analysis.
Cogn Neurosci. 2021 Jul-Oct;12(3-4):163-173. doi: 10.1080/17588928.2020.1806810. Epub 2020 Aug 19.
10
Predicting Biological Gender and Intelligence From fMRI via Dynamic Functional Connectivity.
IEEE Trans Biomed Eng. 2021 Mar;68(3):815-825. doi: 10.1109/TBME.2020.3011363. Epub 2021 Feb 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验