文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Galangin-Loaded Gold Nanoparticles: Molecular Mechanisms of Antiangiogenesis Properties in Breast Cancer.

作者信息

Qaddoori Malik H, Al-Shmgani Hanady S

机构信息

Department of Biology, College of Education for Pure Sciences (Ibn Al-Haitham), University of Baghdad, Baghdad, Iraq.

出版信息

Int J Breast Cancer. 2023 Feb 16;2023:3251211. doi: 10.1155/2023/3251211. eCollection 2023.


DOI:10.1155/2023/3251211
PMID:36844680
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9950320/
Abstract

Angiogenesis is important for tissue during normal physiological processes as well as in a number of diseases, including cancer. Drug resistance is one of the largest difficulties to antiangiogenesis therapy. Due to their lower cytotoxicity and stronger pharmacological advantage, phytochemical anticancer medications have a number of advantages over chemical chemotherapeutic drugs. In the current study, the effectiveness of AuNPs, AuNPs-GAL, and free galangin as an antiangiogenesis agent was evaluated. Different physicochemical and molecular approaches have been used including the characterization, cytotoxicity, scratch wound healing assay, and gene expression of and in MCF-7 and MDA-MB-231 human breast cancer cell line. Results obtained from MTT assay show cell growth reduction in a time- and dose-dependent aspect; also, in comparison to individual treatment, a synergistic impact was indicated. CAM assay results demonstrated galangin-gold nanoparticle capacity to suppress angiogenesis in chick embryo. Additionally, altering and gene expression was recorded. Taken together, all the results can conclude that galangin-conjugated gold nanoparticles can be a promising antiangiogenesis supplemental drug in breast cancer treatment.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7ea/9950320/1d36b2f7a975/IJBC2023-3251211.012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7ea/9950320/200abff1f839/IJBC2023-3251211.001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7ea/9950320/10b601606994/IJBC2023-3251211.002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7ea/9950320/4690d8f76d07/IJBC2023-3251211.003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7ea/9950320/1e25c93cea3a/IJBC2023-3251211.004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7ea/9950320/6a569bc41e99/IJBC2023-3251211.005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7ea/9950320/a2c43410bde4/IJBC2023-3251211.006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7ea/9950320/395f5e9e57c0/IJBC2023-3251211.007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7ea/9950320/3d0e8af4f423/IJBC2023-3251211.008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7ea/9950320/434ec4e3e279/IJBC2023-3251211.009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7ea/9950320/6ddd26dcb558/IJBC2023-3251211.010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7ea/9950320/ab2595e10dc1/IJBC2023-3251211.011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7ea/9950320/1d36b2f7a975/IJBC2023-3251211.012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7ea/9950320/200abff1f839/IJBC2023-3251211.001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7ea/9950320/10b601606994/IJBC2023-3251211.002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7ea/9950320/4690d8f76d07/IJBC2023-3251211.003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7ea/9950320/1e25c93cea3a/IJBC2023-3251211.004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7ea/9950320/6a569bc41e99/IJBC2023-3251211.005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7ea/9950320/a2c43410bde4/IJBC2023-3251211.006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7ea/9950320/395f5e9e57c0/IJBC2023-3251211.007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7ea/9950320/3d0e8af4f423/IJBC2023-3251211.008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7ea/9950320/434ec4e3e279/IJBC2023-3251211.009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7ea/9950320/6ddd26dcb558/IJBC2023-3251211.010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7ea/9950320/ab2595e10dc1/IJBC2023-3251211.011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7ea/9950320/1d36b2f7a975/IJBC2023-3251211.012.jpg

相似文献

[1]
Galangin-Loaded Gold Nanoparticles: Molecular Mechanisms of Antiangiogenesis Properties in Breast Cancer.

Int J Breast Cancer. 2023-2-16

[2]
Gold nanoparticle-conjugated quercetin inhibits epithelial-mesenchymal transition, angiogenesis and invasiveness via EGFR/VEGFR-2-mediated pathway in breast cancer.

Cell Prolif. 2016-12

[3]
Novel biosynthesized gold nanoparticles as anti-cancer agents against breast cancer: Synthesis, biological evaluation, molecular modelling studies.

Mater Sci Eng C Mater Biol Appl. 2019-1-29

[4]
Gold nanoparticles-conjugated quercetin induces apoptosis via inhibition of EGFR/PI3K/Akt-mediated pathway in breast cancer cell lines (MCF-7 and MDA-MB-231).

Cell Biochem Funct. 2017-6

[5]
Targeted nanostructured lipid carrier containing galangin as a promising adjuvant for improving cytotoxic effects of chemotherapeutic agents.

Naunyn Schmiedebergs Arch Pharmacol. 2021-12

[6]
A comprehensive review on chemotherapeutic potential of galangin.

Biomed Pharmacother. 2021-9

[7]
A novel bisindole-PBD conjugate inhibits angiogenesis by regulating STAT3 and VEGF in breast cancer cells.

Life Sci. 2016-3-12

[8]
Amelioration of Tumor Targeting and In Vivo Biodistribution of Tc-Methotrexate-Gold Nanoparticles (Tc-Mex-AuNPs).

J Pharm Sci. 2021-8

[9]
Doxorubicin-loaded oligonucleotide conjugated gold nanoparticles: A promising in vivo drug delivery system for colorectal cancer therapy.

Eur J Med Chem. 2017-12-15

[10]
A comparative study of the adhesion of biosynthesized gold and conjugated gold/prodigiosin nanoparticles to triple negative breast cancer cells.

J Mater Sci Mater Med. 2017-8-17

引用本文的文献

[1]
Exploring the pharmacological mechanisms and therapeutic implications of galangin against neurological disorders.

Pharmacol Rep. 2025-6-20

[2]
Galangin-loaded chitosan nanoparticles inhibit the cell cycle progression and cell proliferation by modulating cyclin-dependent kinases in breast cancer cells.

Naunyn Schmiedebergs Arch Pharmacol. 2025-6-17

[3]
Investigation of Radiotherapy along with Gemcitabine Loaded PEG Gold Nanoparticles Against MCF-7 Breast Cancer Cells.

Adv Biomed Res. 2025-2-28

[4]
Development of a "Signal-On" Fluorescent Aptasensor for Highly Selective and Sensitive Detection of ZEN in Cereal Products Using Nitrogen-Doped Carbon Dots Based on the Inner Filter Effect.

Biosensors (Basel). 2024-7-17

[5]
Integrating network pharmacology, bioinformatics, and experimental validation to unveil the molecular targets and mechanisms of galangin for treating hepatocellular carcinoma.

BMC Complement Med Ther. 2024-5-30

[6]
Selected Flavonols in Breast and Gynecological Cancer: A Systematic Review.

Nutrients. 2023-6-28

本文引用的文献

[1]
Evaluation of Angiogenesis in an Acellular Porous Biomaterial Based on Polyhydroxybutyrate and Chitosan Using the Chicken Chorioallantoic Membrane Model.

Cancers (Basel). 2022-8-30

[2]
Nanotechnology: A Promising Approach for Cancer Diagnosis, Therapeutics and Theragnosis.

Int J Nanomedicine. 2022

[3]
Galangin/β-Cyclodextrin Inclusion Complex as a Drug-Delivery System for Improved Solubility and Biocompatibility in Breast Cancer Treatment.

Molecules. 2022-7-15

[4]
Differential Response of MDA-MB-231 and MCF-7 Breast Cancer Cells to In Vitro Inhibition with CTLA-4 and PD-1 through Cancer-Immune Cells Modified Interactions.

Cells. 2021-8-10

[5]
Gold Nanoparticles Affect Pericyte Biology and Capillary Tube Formation.

Pharmaceutics. 2021-5-17

[6]
Drug Resistance in Metastatic Breast Cancer: Tumor Targeted Nanomedicine to the Rescue.

Int J Mol Sci. 2021-4-28

[7]
Gold Nanoparticles Synthesis and Antimicrobial Effect on Fibrous Materials.

Nanomaterials (Basel). 2021-4-21

[8]
Toxicity of gold nanoparticles (AuNPs): A review.

Biochem Biophys Rep. 2021-4-10

[9]
Cyclin D1 in Cancer: A Molecular Connection for Cell Cycle Control, Adhesion and Invasion in Tumor and Stroma.

Cells. 2020-12-9

[10]
Flavonoid Nanoparticles: A Promising Approach for Cancer Therapy.

Biomolecules. 2020-9-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索