Suppr超能文献

通过人力资本理解新冠疫情下的人员流动:一个统一的因果框架。

Understanding Covid-19 Mobility Through Human Capital: A Unified Causal Framework.

作者信息

Bilgel Fırat, Karahasan Burhan Can

机构信息

Department of Economics, MEF University, 34396 Istanbul, Turkey.

Department of Economics and Finance, Piri Reis University, 34940 Istanbul, Turkey.

出版信息

Comput Econ. 2023 Feb 21:1-41. doi: 10.1007/s10614-023-10359-6.

Abstract

This paper seeks to identify the causal impact of educational human capital on social distancing behavior at workplace in Turkey using district-level data for the period of April 2020 - February 2021. We adopt a unified causal framework, predicated on domain knowledge, theory-justified constraints anda data-driven causal structure discovery using causal graphs. We answer our causal query by employing machine learning prediction algorithms; instrumental variables in the presence of latent confounding and Heckman's model in the presence of selection bias. Results show that educated regions are able to distance-work and educational human capital is a key factor in reducing workplace mobility, possibly through its impact on employment. This pattern leads to higher workplace mobility for less educated regions and translates into higher Covid-19 infection rates. The future of the pandemic lies in less educated segments of developing countries and calls for public health action to decrease its unequal and pervasive impact.

摘要

本文旨在利用2020年4月至2021年2月期间的地区层面数据,确定教育人力资本对土耳其职场社交距离行为的因果影响。我们采用了一个统一的因果框架,该框架基于领域知识、理论合理的约束条件以及使用因果图的数据驱动因果结构发现。我们通过使用机器学习预测算法来回答我们的因果查询;在存在潜在混杂因素的情况下使用工具变量,在存在选择偏差的情况下使用赫克曼模型。结果表明,受教育程度较高的地区能够进行远程工作,教育人力资本是降低职场流动性的关键因素,这可能是通过其对就业的影响实现的。这种模式导致受教育程度较低地区的职场流动性更高,并转化为更高的新冠病毒感染率。疫情的未来取决于发展中国家受教育程度较低的群体,需要采取公共卫生行动来减少其不平等和普遍的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d083/9942069/b55142d3fc62/10614_2023_10359_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验