Suppr超能文献

胃癌中三种代谢亚型的鉴定以及基于代谢途径的风险模型的构建,该模型可预测胃癌患者的总生存期。

Identification of three metabolic subtypes in gastric cancer and the construction of a metabolic pathway-based risk model that predicts the overall survival of GC patients.

作者信息

Chen Tongzuan, Zhao Liqian, Chen Junbo, Jin Gaowei, Huang Qianying, Zhu Ming, Dai Ruixia, Yuan Zhengxi, Chen Junshuo, Tang Mosheng, Chen Tongke, Lin Xiaokun, Ai Weiming, Wu Liang, Chen Xiangjian, Qin Le

机构信息

Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.

Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.

出版信息

Front Genet. 2023 Feb 10;14:1094838. doi: 10.3389/fgene.2023.1094838. eCollection 2023.

Abstract

Gastric cancer (GC) is highly heterogeneous and GC patients have low overall survival rates. It is also challenging to predict the prognosis of GC patients. This is partly because little is known about the prognosis-related metabolic pathways in this disease. Hence, our objective was to identify GC subtypes and genes related to prognosis, based on changes in the activity of core metabolic pathways in GC tumor samples. Differences in the activity of metabolic pathways in GC patients were analyzed using Gene Set Variation Analysis (GSVA), leading to the identification of three clinical subtypes by non-negative matrix factorization (NMF). Based on our analysis, subtype 1 showed the best prognosis while subtype 3 exhibited the worst prognosis. Interestingly, we observed marked differences in gene expression between the three subtypes, through which we identified a new evolutionary driver gene, CNBD1. Furthermore, we used 11 metabolism-associated genes identified by LASSO and random forest algorithms to construct a prognostic model and verified our results using qRT-PCR (five matched clinical tissues of GC patients). This model was found to be both effective and robust in the GSE84437 and GSE26253 cohorts, and the results from multivariate Cox regression analyses confirmed that the 11-gene signature was an independent prognostic predictor ( < 0.0001, HR = 2.8, 95% CI 2.1-3.7). The signature was found to be relevant to the infiltration of tumor-associated immune cells. In conclusion, our work identified significant GC prognosis-related metabolic pathways in different GC subtypes and provided new insights into GC-subtype prognostic assessment.

摘要

胃癌(GC)具有高度异质性,GC患者的总生存率较低。预测GC患者的预后也具有挑战性。部分原因是对该疾病中与预后相关的代谢途径了解甚少。因此,我们的目标是基于GC肿瘤样本中核心代谢途径活性的变化,识别与预后相关的GC亚型和基因。使用基因集变异分析(GSVA)分析GC患者代谢途径活性的差异,通过非负矩阵分解(NMF)确定了三种临床亚型。根据我们的分析,亚型1的预后最佳,而亚型3的预后最差。有趣的是,我们观察到三种亚型之间基因表达存在显著差异,据此我们鉴定出一个新的进化驱动基因CNBD1。此外,我们使用通过LASSO和随机森林算法鉴定的11个代谢相关基因构建了一个预后模型,并使用qRT-PCR(5对GC患者的匹配临床组织)验证了我们的结果。该模型在GSE84437和GSE26253队列中被发现既有效又稳健,多变量Cox回归分析结果证实11基因特征是一个独立的预后预测指标(<0.0001,HR = 2.8,95%CI 2.1 - 3.7)。该特征被发现与肿瘤相关免疫细胞的浸润有关。总之,我们的工作在不同GC亚型中识别出了与GC预后相关的重要代谢途径,并为GC亚型预后评估提供了新的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b530/9950121/045fe273f26b/fgene-14-1094838-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验