Jin Jie, Mangal Utkarsh, Seo Ji-Young, Kim Ji-Yeong, Ryu Jeong-Hyun, Lee Young-Hee, Lugtu Cerjay, Hwang Geelsu, Cha Jung-Yul, Lee Kee-Joon, Yu Hyung-Seog, Kim Kwang-Mahn, Jang Sungil, Kwon Jae-Sung, Choi Sung-Hwan
Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
Department of Oral Biochemistry, Institute of Oral Bioscience, School of Dentistry, Jeonbuk National University, Jeonju-si, 54907, Republic of Korea.
Biomaterials. 2023 May;296:122063. doi: 10.1016/j.biomaterials.2023.122063. Epub 2023 Feb 22.
Poly-(methyl methacrylate) (PMMA) is the preferred biomaterial for orofacial prostheses used for the rehabilitation of naso-palatal defects. However, conventional PMMA has limitations determined by the complexity of the local microbiota and the friability of oral mucosa adjacent to these defects. Our purpose was to develop a new type of PMMA, i-PMMA, with good biocompatibility and better biological effects such as higher resistance to microbial adhesion of multiple species and enhanced antioxidant effect. The addition of cerium oxide nanoparticles to PMMA using a mesoporous nano-silica carrier and polybetaine conditioning, resulted in an increased release of cerium ions and enzyme mimetic activity, without tangible loss of mechanical properties. Ex vivo experiments confirmed these observations. In stressed human gingival fibroblasts, i-PMMA reduced the levels of reactive oxygen species and increased the expression of homeostasis-related proteins (PPARg, ATG5, LCI/III). Furthermore, i-PMMA increased the levels of expression of superoxide dismutase and mitogen-activated protein kinases (ERK and Akt), and cellular migration. Lastly, we demonstrated the biosafety of i-PMMA using two in vivo models: skin sensitization assay and oral mucosa irritation test, respectively. Therefore, i-PMMA offers a cytoprotective interface that prevents microbial adhesion and attenuates oxidative stress, thus supporting physiological recovery of the oral mucosa.
聚甲基丙烯酸甲酯(PMMA)是用于修复鼻腭部缺损的口腔颌面修复体的首选生物材料。然而,传统的PMMA存在局限性,这取决于局部微生物群的复杂性以及这些缺损附近口腔黏膜的脆性。我们的目的是开发一种新型的PMMA,即i-PMMA,它具有良好的生物相容性和更好的生物学效应,如对多种物种的微生物粘附具有更高的抵抗力以及增强的抗氧化作用。使用介孔纳米二氧化硅载体和聚甜菜碱处理将氧化铈纳米颗粒添加到PMMA中,导致铈离子释放增加和类酶活性增强,而机械性能没有明显损失。体外实验证实了这些观察结果。在应激的人牙龈成纤维细胞中,i-PMMA降低了活性氧水平,并增加了与内稳态相关蛋白(PPARg、ATG5、LCI/III)的表达。此外,i-PMMA增加了超氧化物歧化酶和丝裂原活化蛋白激酶(ERK和Akt)的表达水平以及细胞迁移。最后,我们分别使用两种体内模型(皮肤致敏试验和口腔黏膜刺激试验)证明了i-PMMA的生物安全性。因此,i-PMMA提供了一个细胞保护界面,可防止微生物粘附并减轻氧化应激,从而支持口腔黏膜的生理恢复。