Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
Department of Biochemistry and Molecular Biology, and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
Biomed J. 2023 Apr;46(2):100587. doi: 10.1016/j.bj.2023.02.007. Epub 2023 Feb 25.
Since December 2019, the Coronavirus disease 2019 (COVID-19) outbreak caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has spread rapidly around the world, overburdening healthcare systems and creating significant global health concerns. Rapid detection of infected individuals via early diagnostic tests and administration of effective therapy remains vital in pandemic control, and recent advances in the clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated proteins (Cas) system may support the development of novel diagnostic and therapeutic approaches. Cas-based SARS-CoV-2 detection methods (FnCAS9 Editor Linked Uniform Detection Assay (FELUDA), DNA endonuclease-targeted CRISPR trans reporter (DETECTR), and Specific High-sensitivity Enzymatic Reporter Unlocking (SHERLOCK)) have been developed for easier handling compared to quantitative polymerase chain reaction (qPCR) assays, with good rapidity, high specificity, and reduced need for complex instrumentation. Cas-CRISPR-derived RNA (Cas-crRNA) complexes have been shown to reduce viral loads in the lungs of infected hamsters, by degrading virus genomes and limiting viral replication in host cells. Viral-host interaction screening platforms have been developed using the CRISPR-based system to identify essential cellular factors involved in pathogenesis, and CRISPR knockout (CRISPRKO) and activation screening results have revealed vital pathways in the life cycle of coronaviruses, including host cell entry receptors (ACE2, DPP4, and ANPEP), proteases involved in spike activation and membrane fusion (cathepsin L (CTSL) and transmembrane protease serine 2 (TMPRSS2)), intracellular traffic control routes for virus uncoating and budding, and membrane recruitment for viral replication. Several novel genes (SWI/SNF Related, Matrix Associated, Actin Dependent Regulator of Chromatin, subfamily A, member 4 (SMARCA4), ARIDIA, and KDM6A) have also been identified via systematic data mining analysis as pathogenic factors for severe CoV infection. This review highlights how CRISPR-based systems can be applied to investigate the viral life cycle, detect viral genomes, and develop therapies against SARS-CoV-2 infection.
自 2019 年 12 月以来,由严重急性呼吸系统综合症冠状病毒 2(SARS-CoV-2)引起的 2019 年冠状病毒病(COVID-19)疫情在全球迅速蔓延,使医疗保健系统不堪重负,并引发了重大的全球健康关注。通过早期诊断测试快速检测感染个体,并进行有效的治疗,在大流行控制中仍然至关重要,而最近在成簇规律间隔短回文重复(CRISPR)-CRISPR 相关蛋白(Cas)系统方面的进展可能支持新型诊断和治疗方法的开发。基于 Cas 的 SARS-CoV-2 检测方法(FnCAS9 编辑器连接的统一检测测定法(FELUDA)、DNA 内切酶靶向的 CRISPR 转报告子(DETECTR)和特定高灵敏度酶报告子解锁(SHERLOCK))已经开发出来,与定量聚合酶链反应(qPCR)相比,这些方法更容易操作,具有良好的快速性、高特异性和减少对复杂仪器的需求。Cas-CRISPR 衍生的 RNA(Cas-crRNA)复合物已被证明可通过降解病毒基因组和限制病毒在宿主细胞中的复制,降低感染仓鼠肺部的病毒载量。利用基于 CRISPR 的系统开发了病毒-宿主相互作用筛选平台,以鉴定参与发病机制的必需细胞因子,CRISPR 敲除(CRISPRKO)和激活筛选结果揭示了冠状病毒生命周期中的重要途径,包括宿主细胞进入受体(ACE2、DPP4 和 ANPEP)、参与刺突激活和膜融合的蛋白酶(组织蛋白酶 L(CTSL)和跨膜蛋白酶丝氨酸 2(TMPRSS2))、病毒脱壳和出芽的细胞内交通控制途径以及病毒复制的膜募集。通过系统数据挖掘分析,还发现了几个新的基因(SWI/SNF 相关、基质相关、肌动蛋白依赖性染色质调节剂亚家族 A、成员 4(SMARCA4)、ARIDIA 和 KDM6A)作为严重 CoV 感染的致病因素。本综述强调了基于 CRISPR 的系统如何应用于研究病毒生命周期、检测病毒基因组以及开发针对 SARS-CoV-2 感染的疗法。