UCSF Department of Medicine, Division of Cardiology, San Francisco, California.
Bakar Computation Health Sciences Institute, University of California, San Francisco, San Francisco, California.
J Card Fail. 2023 Jul;29(7):1017-1028. doi: 10.1016/j.cardfail.2022.12.016. Epub 2023 Jan 24.
Pulmonary hypertension (PH) is life-threatening, and often diagnosed late in its course. We aimed to evaluate if a deep learning approach using electrocardiogram (ECG) data alone can detect PH and clinically important subtypes. We asked: does an automated deep learning approach to ECG interpretation detect PH and its clinically important subtypes?
Adults with right heart catheterization or an echocardiogram within 90 days of an ECG at the University of California, San Francisco (2012-2019) were retrospectively identified as PH or non-PH. A deep convolutional neural network was trained on patients' 12-lead ECG voltage data. Patients were divided into training, development, and test sets in a ratio of 7:1:2. Overall, 5016 PH and 19,454 patients without PH were used in the study. The mean age at the time of ECG was 62.29 ± 17.58 years and 49.88% were female. The mean interval between ECG and right heart catheterization or echocardiogram was 3.66 and 2.23 days for patients with PH and patients without PH, respectively. In the test dataset, the model achieved an area under the receiver operating characteristic curve, sensitivity, and specificity, respectively of 0.89, 0.79, and 0.84 to detect PH; 0.91, 0.83, and 0.84 to detect precapillary PH; 0.88, 0.81, and 0.81 to detect pulmonary arterial hypertension, and 0.80, 0.73, and 0.76 to detect group 3 PH. We additionally applied the trained model on ECGs from participants in the test dataset that were obtained from up to 2 years before diagnosis of PH; the area under the receiver operating characteristic curve was 0.79 or greater.
A deep learning ECG algorithm can detect PH and PH subtypes around the time of diagnosis and can detect PH using ECGs that were done up to 2 years before right heart catheterization/echocardiogram diagnosis. This approach has the potential to decrease diagnostic delays in PH.
肺动脉高压(PH)是一种危及生命的疾病,通常在病程晚期才被诊断出来。我们旨在评估是否可以通过使用心电图(ECG)数据的深度学习方法来检测 PH 和其具有临床重要意义的亚型。我们提出了以下问题:自动化的深度学习方法是否可以用于 ECG 解释,以检测 PH 和其具有临床重要意义的亚型?
我们回顾性地确定了在加利福尼亚大学旧金山分校(2012-2019 年)进行 ECG 检查后 90 天内进行右心导管检查或超声心动图检查的成年人是否患有 PH 或非 PH。使用患者的 12 导联 ECG 电压数据对深度卷积神经网络进行了训练。将患者分为训练集、开发集和测试集,比例为 7:1:2。总体而言,本研究纳入了 5016 例 PH 患者和 19454 例无 PH 患者。进行 ECG 检查时患者的平均年龄为 62.29±17.58 岁,其中 49.88%为女性。PH 患者和无 PH 患者的 ECG 与右心导管检查或超声心动图之间的平均间隔分别为 3.66 天和 2.23 天。在测试数据集中,该模型的受试者工作特征曲线下面积、敏感性和特异性分别为 0.89、0.79 和 0.84,以检测 PH;0.91、0.83 和 0.84,以检测毛细血管前 PH;0.88、0.81 和 0.81,以检测肺动脉高压;0.80、0.73 和 0.76,以检测 PH 组 3。我们还将经过训练的模型应用于测试数据集中的 ECG,这些 ECG 是在 PH 诊断前长达 2 年获得的;受试者工作特征曲线下面积为 0.79 或更高。
深度学习 ECG 算法可以在诊断时检测 PH 和 PH 亚型,并可以使用在右心导管检查/超声心动图诊断前长达 2 年的 ECG 检测 PH。这种方法有可能减少 PH 的诊断延迟。