Suppr超能文献

基于 LSTM 神经网络的氧摄取预测代理模型。

Surrogate Modelling for Oxygen Uptake Prediction Using LSTM Neural Network.

机构信息

Faculty of Information Technology and Communication Sciences, Tampere University, 33720 Tampere, Finland.

Faculty of Sport and Health Sciences, University of Jyväskylä, Seminaarinkatu 15, 40014 Jyväskylän yliopisto, Finland.

出版信息

Sensors (Basel). 2023 Feb 16;23(4):2249. doi: 10.3390/s23042249.

Abstract

Oxygen uptake (V˙O2) is an important metric in any exercise test including walking and running. It can be measured using portable spirometers or metabolic analyzers. Those devices are, however, not suitable for constant use by consumers due to their costs, difficulty of operation and their intervening in the physical integrity of their users. Therefore, it is important to develop approaches for the indirect estimation of V˙O2-based measurements of motion parameters, heart rate data and application-specific measurements from consumer-grade sensors. Typically, these approaches are based on linear regression models or neural networks. This study investigates how motion data contribute to V˙O2 estimation accuracy during unconstrained running and walking. The results suggest that a long short term memory (LSTM) neural network can predict oxygen consumption with an accuracy of 2.49 mL/min/kg (95% limits of agreement) based only on speed, speed change, cadence and vertical oscillation measurements from an inertial navigation system combined with a Global Positioning System (INS/GPS) device developed by our group, worn on the torso. Combining motion data and heart rate data can significantly improve the V˙O2 estimation resulting in approximately 1.7-1.9 times smaller prediction errors than using only motion or heart rate data.

摘要

摄氧量(V˙O2)是任何运动测试(包括步行和跑步)中的一个重要指标。它可以使用便携式气体流量计或代谢分析仪进行测量。然而,由于这些设备的成本高、操作困难,并且会干扰使用者的身体完整性,因此不适合消费者经常使用。因此,开发从消费级传感器中获取运动参数、心率数据和特定应用测量值的间接估算 V˙O2 的方法非常重要。通常,这些方法基于线性回归模型或神经网络。本研究调查了运动数据在不受约束的跑步和步行中如何有助于 V˙O2 估算的准确性。结果表明,仅基于我们小组开发的惯性导航系统(INS)和全球定位系统(GPS)设备测量的速度、速度变化、步频和垂直摆动,以及长短期记忆(LSTM)神经网络可以以 2.49 毫升/分钟/千克的精度(95%一致性界限)预测耗氧量。将运动数据和心率数据相结合可以显著提高 V˙O2 的估算精度,使预测误差比仅使用运动或心率数据时小约 1.7-1.9 倍。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f0f3/9964573/16f81baac7f5/sensors-23-02249-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验