Amelard Robert, Hedge Eric T, Hughson Richard L
KITE-Toronto Rehabilitation Institute, University Health Network, Toronto, ON, Canada.
Schlegel-UW Research Institute for Aging, Waterloo, ON, Canada.
NPJ Digit Med. 2021 Nov 11;4(1):156. doi: 10.1038/s41746-021-00531-3.
Oxygen consumption ([Formula: see text]) provides established clinical and physiological indicators of cardiorespiratory function and exercise capacity. However, [Formula: see text] monitoring is largely limited to specialized laboratory settings, making its widespread monitoring elusive. Here we investigate temporal prediction of [Formula: see text] from wearable sensors during cycle ergometer exercise using a temporal convolutional network (TCN). Cardiorespiratory signals were acquired from a smart shirt with integrated textile sensors alongside ground-truth [Formula: see text] from a metabolic system on 22 young healthy adults. Participants performed one ramp-incremental and three pseudorandom binary sequence exercise protocols to assess a range of [Formula: see text] dynamics. A TCN model was developed using causal convolutions across an effective history length to model the time-dependent nature of [Formula: see text]. Optimal history length was determined through minimum validation loss across hyperparameter values. The best performing model encoded 218 s history length (TCN-VO2 A), with 187, 97, and 76 s yielding <3% deviation from the optimal validation loss. TCN-VO2 A showed strong prediction accuracy (mean, 95% CI) across all exercise intensities (-22 ml min, [-262, 218]), spanning transitions from low-moderate (-23 ml min, [-250, 204]), low-high (14 ml min, [-252, 280]), ventilatory threshold-high (-49 ml min, [-274, 176]), and maximal (-32 ml min, [-261, 197]) exercise. Second-by-second classification of physical activity across 16,090 s of predicted [Formula: see text] was able to discern between vigorous, moderate, and light activity with high accuracy (94.1%). This system enables quantitative aerobic activity monitoring in non-laboratory settings, when combined with tidal volume and heart rate reserve calibration, across a range of exercise intensities using wearable sensors for monitoring exercise prescription adherence and personal fitness.
耗氧量([公式:见原文])提供了心肺功能和运动能力既定的临床和生理指标。然而,[公式:见原文]监测在很大程度上局限于专业实验室环境,这使得其广泛监测难以实现。在此,我们使用时间卷积网络(TCN)研究在周期测力计运动期间从可穿戴传感器对[公式:见原文]进行时间预测。从配备集成纺织传感器的智能衬衫采集心肺信号,同时从代谢系统获取针对22名年轻健康成年人的真实[公式:见原文]数据。参与者进行了一次递增负荷运动和三次伪随机二进制序列运动方案,以评估一系列[公式:见原文]动态变化。使用因果卷积跨越有效历史长度开发了一个TCN模型,以模拟[公式:见原文]的时间依赖性。通过在超参数值上的最小验证损失确定最佳历史长度。表现最佳的模型编码218秒的历史长度(TCN-VO2 A),187秒、97秒和76秒产生的偏差与最佳验证损失相差<3%。TCN-VO2 A在所有运动强度下均显示出较强的预测准确性(均值,95%置信区间)(-22毫升·分钟,[-262, 218]),涵盖从低-中强度(-23毫升·分钟,[-250, 204])、低-高强度(14毫升·分钟,[-252, 280])、通气阈值-高强度(-49毫升·分钟,[-274, 176])到最大强度(-32毫升·分钟,[-261, 197])运动的过渡阶段。在预测的16090秒[公式:见原文]内对身体活动进行逐秒分类,能够以高精度(94.1%)区分剧烈、中等和轻度活动。当与潮气量和心率储备校准相结合时,该系统能够在非实验室环境中,使用可穿戴传感器在一系列运动强度下对有氧活动进行定量监测,以监测运动处方的依从性和个人健康状况。