Department of Veterinary Biosciences, University of Helsinki, 00014 Helsinki, Finland.
Department of Virology, University of Helsinki, 00014 Helsinki, Finland.
Viruses. 2023 Feb 4;15(2):431. doi: 10.3390/v15020431.
Viruses are the main agents causing emerging and re-emerging infectious diseases. It is therefore important to screen for and detect them and uncover the evolutionary processes that support their ability to jump species boundaries and establish themselves in new hosts. Metagenomic next-generation sequencing (mNGS) is a high-throughput, impartial technology that has enabled virologists to detect either known or novel, divergent viruses from clinical, animal, wildlife and environmental samples, with little a priori assumptions. mNGS is heavily dependent on bioinformatic analysis, with an emerging demand for integrated bioinformatic workflows. Here, we present Lazypipe 2, an updated mNGS pipeline with, as compared to Lazypipe1, significant improvements in code stability and transparency, with added functionality and support for new software components. We also present extensive benchmarking results, including evaluation of a novel canine simulated metagenome, precision and recall of virus detection at varying sequencing depth, and a low to extremely low proportion of viral genetic material. Additionally, we report accuracy of virus detection with two strategies: homology searches using nucleotide or amino acid sequences. We show that Lazypipe 2 with nucleotide-based annotation approaches near perfect detection for eukaryotic viruses and, in terms of accuracy, outperforms the compared pipelines. We also discuss the importance of homology searches with amino acid sequences for the detection of highly divergent novel viruses.
病毒是引起新发和再现传染病的主要病原体。因此,筛选和检测病毒并揭示支持其跨越物种界限并在新宿主中建立自身的进化过程非常重要。宏基因组下一代测序 (mNGS) 是一种高通量、公正的技术,使病毒学家能够从临床、动物、野生动物和环境样本中检测到已知或新型、分化的病毒,几乎没有先验假设。mNGS 严重依赖于生物信息学分析,对集成生物信息学工作流程的需求不断涌现。在这里,我们展示了 Lazypipe 2,这是一个经过更新的 mNGS 管道,与 Lazypipe1 相比,在代码稳定性和透明度方面有了显著的改进,增加了功能并支持新的软件组件。我们还提供了广泛的基准测试结果,包括对新型犬模拟宏基因组、在不同测序深度下病毒检测的精度和召回率以及低至极低比例的病毒遗传物质的评估。此外,我们还报告了两种策略下的病毒检测准确性:使用核苷酸或氨基酸序列进行同源搜索。我们表明,基于核苷酸注释的 Lazypipe 2 对真核病毒的检测接近完美,并且在准确性方面优于比较的管道。我们还讨论了使用氨基酸序列进行同源搜索对于检测高度分化的新型病毒的重要性。
Viruses. 2023-2-4
Viruses. 2020-1-16
mSphere. 2020-9-9
JAMA Neurol. 2018-8-1
Commun Biol. 2024-12-20
Microbiol Resour Announc. 2024-7-18
NAR Genom Bioinform. 2024-5-25
Neurol Neuroimmunol Neuroinflamm. 2024-5
Front Bioinform. 2024-3-15
Microorganisms. 2024-3-2
Viruses. 2022-7-7
Protein Sci. 2022-1
F1000Res. 2021
J Genet Genomics. 2021-9-20