Suppr超能文献

通过边缘生成对单原子 FeN 位点的几何调谐增强了多酶特性。

Geometric Tuning of Single-Atom FeN Sites via Edge-Generation Enhances Multi-Enzymatic Properties.

机构信息

Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea.

School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea.

出版信息

Adv Mater. 2023 May;35(19):e2207666. doi: 10.1002/adma.202207666. Epub 2023 Mar 30.

Abstract

Single-atom nanozymes (SAzymes) are considered promising alternatives to natural enzymes. The catalytic performance of SAzymes featuring homogeneous, well-defined active structures can be enhanced through elucidating structure-activity relationship and tailoring physicochemical properties. However, manipulating enzymatic properties through structural variation is an underdeveloped approach. Herein, the synthesis of edge-rich Fe single-atom nanozymes (FeNC-edge) via an H O -mediated edge generation is reported. By controlling the number of edge sites, the peroxidase (POD)- and oxidase (OXD)-like performance is significantly enhanced. The activity enhancement results from the presence of abundant edges, which provide new anchoring sites to mononuclear Fe. Experimental results combined with density functional theory (DFT) calculations reveal that FeN moieties in the edge sites display high electron density of Fe atoms and open N atoms. Finally, it is demonstrated that FeNC-edge nanozyme effectively inhibits tumor growth both in vitro and in vivo, suggesting that edge-tailoring is an efficient strategy for developing artificial enzymes as novel catalytic therapeutics.

摘要

单原子纳米酶 (SAzymes) 被认为是天然酶的有前途的替代品。通过阐明结构-活性关系和调整物理化学性质,可以提高具有均匀、明确的活性结构的 SAzymes 的催化性能。然而,通过结构变化来操纵酶的性质是一种不发达的方法。本文通过 H2O 介导的边缘生成,报道了富边缘的 Fe 单原子纳米酶 (FeNC-edge) 的合成。通过控制边缘位点的数量,过氧化物酶 (POD) 和氧化酶 (OXD) 样性能得到显著增强。活性增强的原因是存在丰富的边缘,为单核 Fe 提供了新的锚固位点。实验结果结合密度泛函理论 (DFT) 计算表明,边缘位点的 FeN 部分显示出 Fe 原子和开放 N 原子的高电子密度。最后,证明了 FeNC-edge 纳米酶在体外和体内均能有效抑制肿瘤生长,表明边缘调整是开发人工酶作为新型催化治疗剂的有效策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验