Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), State Key Laboratory of Photocatalysis on Energy and Environment, Department of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China.
State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 10010, P. R. China.
Nano Lett. 2023 Jul 12;23(13):6073-6080. doi: 10.1021/acs.nanolett.3c01454. Epub 2023 Jun 26.
Pursuing effective and generalized strategies for modulating the electronic structures of atomically dispersed nanozymes with remarkable catalytic performance is exceptionally attractive yet challenging. Herein, we developed a facile "formamide condensation and carbonization" strategy to fabricate a library of single-atom (M-NC; 6 types) and dual-atom (M/M-NC; 13 types) metal-nitrogen-carbon nanozymes (M = Fe, Co, Ni, Mn, Ru, Cu) to reveal peroxidase- (POD-) like activities. The FeCo-NC dual-atom nanozyme with Fe-N/Co-N coordination displayed the highest POD-like activity. Density functional theory (DFT) calculations revealed that the Co atom site synergistically affects the d-band center position of the Fe atom site and served as the second reaction center, which contributes to better POD-like activity. Finally, FeCo NC was shown to be effective in inhibiting tumor growth both and , suggesting that diatomic synergy is an effective strategy for developing artificial nanozymes as novel nanocatalytic therapeutics.
开发有效的、普遍适用的策略来调节原子分散纳米酶的电子结构,使其具有显著的催化性能,这是非常有吸引力但具有挑战性的。在此,我们开发了一种简便的“甲酰胺缩合碳化”策略,用于制备一系列单原子(M-NC;6 种)和双原子(M/M-NC;13 种)金属-氮-碳纳米酶(M=Fe、Co、Ni、Mn、Ru、Cu),以揭示过氧化物酶样(POD)活性。具有 Fe-N/Co-N 配位的 FeCo-NC 双原子纳米酶表现出最高的 POD 样活性。密度泛函理论(DFT)计算表明,Co 原子位协同影响 Fe 原子位的 d 带中心位置,并充当第二个反应中心,这有助于提高 POD 样活性。最后,FeCo-NC 被证明在体内和体外都能有效抑制肿瘤生长,这表明双原子协同是开发人工纳米酶作为新型纳米催化治疗剂的有效策略。