State Key Laboratory of Rice Biology, Ministry of Agriculture Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, China.
mBio. 2023 Apr 25;14(2):e0015723. doi: 10.1128/mbio.00157-23. Epub 2023 Mar 1.
Fusarium oxysporum f. sp. (), a soilborne phytopathogenic fungus, causes watermelon Fusarium wilt, resulting in serious yield losses worldwide. However, the underlying molecular mechanism of virulence is largely unknown. The present study investigated the biological functions of six , encoding RNA binding Pumilio proteins, and especially explored the molecular mechanism of in virulence. A series of phenotypic analyses indicated that have distinct but diverse functions in vegetative growth, asexual reproduction, macroconidia morphology, spore germination, cell wall, or abiotic stress response of . Notably, the deletion of attenuates virulence by impairing the invasive growth and colonization ability inside the watermelon plants. FonPUF1 possesses RNA binding activity, and its biochemical activity and virulence function depend on the RNA recognition motif or Pumilio domains. FonPUF1 associates with the actin-related protein 2/3 (ARP2/3) complex by interacting with FonARC18, which is also required for virulence and plays an important role in regulating mitochondrial functions, such as ATP generation and reactive oxygen species production. Transcriptomic profiling of identified a set of putative FonPUF1-dependent virulence-related genes in , possessing a novel A-rich binding motif in the 3' untranslated region (UTR), indicating that FonPUF1 participates in additional mechanisms critical for virulence. These findings highlight the functions and molecular mechanism of FonPUFs in virulence. Fusarium oxysporum is a devastating plant-pathogenic fungus that causes vascular wilt disease in many economically important crops, including watermelon, worldwide. F. oxysporum f. sp. () causes serious yield loss in watermelon production. However, the molecular mechanism of Fusarium wilt development by remains largely unknown. Here, we demonstrate that six putative Pumilio proteins-encoding genes () differentially operate diverse basic biological processes, including stress response, and that is required for virulence. Notably, FonPUF1 possesses RNA binding activity and associates with the actin-related protein 2/3 complex to control mitochondrial functions. Furthermore, FonPUF1 coordinates the expression of a set of putative virulence-related genes in by binding to a novel A-rich motif present in the 3' UTR of a diverse set of target mRNAs. Our study disentangles the previously unexplored molecular mechanism involved in regulating virulence, providing a possibility for the development of novel strategies for disease management.
尖镰孢菌(Fusarium oxysporum)是一种土传植物病原菌,可引起西瓜枯萎病,导致全球范围内严重的产量损失。然而,其毒力的潜在分子机制在很大程度上尚不清楚。本研究调查了六个尖镰孢菌 Pumilio 蛋白编码基因()的生物学功能,特别是探索了在毒力中的分子机制。一系列表型分析表明,在营养生长、无性繁殖、大型分生孢子形态、孢子萌发、细胞壁或非生物胁迫反应中,具有不同但多样的功能。值得注意的是,缺失会削弱在西瓜植物体内的侵袭性生长和定植能力,从而降低毒力。FonPUF1 具有 RNA 结合活性,其生化活性和毒力功能依赖于 RNA 识别基序或 Pumilio 结构域。FonPUF1 通过与 FonARC18 相互作用与肌动蛋白相关蛋白 2/3(ARP2/3)复合物相关联,FonARC18 也需要毒力,并在调节线粒体功能(如 ATP 生成和活性氧产生)中发挥重要作用。对 进行的转录组分析鉴定了一组推定的 FonPUF1 依赖性与毒力相关的基因,它们在 3'非翻译区(UTR)中具有新型 A 丰富结合基序,表明 FonPUF1 参与了毒力的其他关键机制。这些发现强调了 FonPUFs 在毒力中的功能和分子机制。尖镰孢菌是一种毁灭性的植物病原菌,可引起包括西瓜在内的许多经济重要作物的维管束萎蔫病,在全球范围内。F. oxysporum f. sp. ()可导致西瓜生产中严重减产。然而,尖镰孢菌枯萎病发展的分子机制在很大程度上仍然未知。在这里,我们证明了六个推定的 Pumilio 蛋白编码基因()在不同的基本生物学过程中发挥不同的作用,包括应激反应,并且需要毒力。值得注意的是,FonPUF1 具有 RNA 结合活性,并与肌动蛋白相关蛋白 2/3 复合物相关联,以控制线粒体功能。此外,FonPUF1 通过结合一组推定的与毒力相关的基因在 3'UTR 中存在的新型 A 丰富基序来协调一组假定的与毒力相关的基因的表达。我们的研究揭示了调节毒力的以前未探索的分子机制,为疾病管理的新策略的发展提供了可能性。
Int J Mol Sci. 2021-1-15
Front Microbiol. 2025-5-7
J Microbiol Biotechnol. 2021-5-28
Mol Plant Pathol. 2020-2