文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

尖镰孢古巴专化型通过与 ARP2/3 复合物互作并结合不同转录本 3'UTR 中的富含 A 基序调控西瓜致病力。

Fusarium oxysporum f. sp. Pumilio 1 Regulates Virulence on Watermelon through Interacting with the ARP2/3 Complex and Binding to an A-Rich Motif in the 3' UTR of Diverse Transcripts.

机构信息

State Key Laboratory of Rice Biology, Ministry of Agriculture Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, China.

出版信息

mBio. 2023 Apr 25;14(2):e0015723. doi: 10.1128/mbio.00157-23. Epub 2023 Mar 1.


DOI:10.1128/mbio.00157-23
PMID:36856417
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10128047/
Abstract

Fusarium oxysporum f. sp. (), a soilborne phytopathogenic fungus, causes watermelon Fusarium wilt, resulting in serious yield losses worldwide. However, the underlying molecular mechanism of virulence is largely unknown. The present study investigated the biological functions of six , encoding RNA binding Pumilio proteins, and especially explored the molecular mechanism of in virulence. A series of phenotypic analyses indicated that have distinct but diverse functions in vegetative growth, asexual reproduction, macroconidia morphology, spore germination, cell wall, or abiotic stress response of . Notably, the deletion of attenuates virulence by impairing the invasive growth and colonization ability inside the watermelon plants. FonPUF1 possesses RNA binding activity, and its biochemical activity and virulence function depend on the RNA recognition motif or Pumilio domains. FonPUF1 associates with the actin-related protein 2/3 (ARP2/3) complex by interacting with FonARC18, which is also required for virulence and plays an important role in regulating mitochondrial functions, such as ATP generation and reactive oxygen species production. Transcriptomic profiling of identified a set of putative FonPUF1-dependent virulence-related genes in , possessing a novel A-rich binding motif in the 3' untranslated region (UTR), indicating that FonPUF1 participates in additional mechanisms critical for virulence. These findings highlight the functions and molecular mechanism of FonPUFs in virulence. Fusarium oxysporum is a devastating plant-pathogenic fungus that causes vascular wilt disease in many economically important crops, including watermelon, worldwide. F. oxysporum f. sp. () causes serious yield loss in watermelon production. However, the molecular mechanism of Fusarium wilt development by remains largely unknown. Here, we demonstrate that six putative Pumilio proteins-encoding genes () differentially operate diverse basic biological processes, including stress response, and that is required for virulence. Notably, FonPUF1 possesses RNA binding activity and associates with the actin-related protein 2/3 complex to control mitochondrial functions. Furthermore, FonPUF1 coordinates the expression of a set of putative virulence-related genes in by binding to a novel A-rich motif present in the 3' UTR of a diverse set of target mRNAs. Our study disentangles the previously unexplored molecular mechanism involved in regulating virulence, providing a possibility for the development of novel strategies for disease management.

摘要

尖镰孢菌(Fusarium oxysporum)是一种土传植物病原菌,可引起西瓜枯萎病,导致全球范围内严重的产量损失。然而,其毒力的潜在分子机制在很大程度上尚不清楚。本研究调查了六个尖镰孢菌 Pumilio 蛋白编码基因()的生物学功能,特别是探索了在毒力中的分子机制。一系列表型分析表明,在营养生长、无性繁殖、大型分生孢子形态、孢子萌发、细胞壁或非生物胁迫反应中,具有不同但多样的功能。值得注意的是,缺失会削弱在西瓜植物体内的侵袭性生长和定植能力,从而降低毒力。FonPUF1 具有 RNA 结合活性,其生化活性和毒力功能依赖于 RNA 识别基序或 Pumilio 结构域。FonPUF1 通过与 FonARC18 相互作用与肌动蛋白相关蛋白 2/3(ARP2/3)复合物相关联,FonARC18 也需要毒力,并在调节线粒体功能(如 ATP 生成和活性氧产生)中发挥重要作用。对 进行的转录组分析鉴定了一组推定的 FonPUF1 依赖性与毒力相关的基因,它们在 3'非翻译区(UTR)中具有新型 A 丰富结合基序,表明 FonPUF1 参与了毒力的其他关键机制。这些发现强调了 FonPUFs 在毒力中的功能和分子机制。尖镰孢菌是一种毁灭性的植物病原菌,可引起包括西瓜在内的许多经济重要作物的维管束萎蔫病,在全球范围内。F. oxysporum f. sp. ()可导致西瓜生产中严重减产。然而,尖镰孢菌枯萎病发展的分子机制在很大程度上仍然未知。在这里,我们证明了六个推定的 Pumilio 蛋白编码基因()在不同的基本生物学过程中发挥不同的作用,包括应激反应,并且需要毒力。值得注意的是,FonPUF1 具有 RNA 结合活性,并与肌动蛋白相关蛋白 2/3 复合物相关联,以控制线粒体功能。此外,FonPUF1 通过结合一组推定的与毒力相关的基因在 3'UTR 中存在的新型 A 丰富基序来协调一组假定的与毒力相关的基因的表达。我们的研究揭示了调节毒力的以前未探索的分子机制,为疾病管理的新策略的发展提供了可能性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18e4/10128047/30265b8cbc88/mbio.00157-23-f009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18e4/10128047/4cd645f29d5e/mbio.00157-23-f001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18e4/10128047/15b5ef6ea7da/mbio.00157-23-f002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18e4/10128047/2390bd496c8c/mbio.00157-23-f003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18e4/10128047/1ee8afb42f93/mbio.00157-23-f004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18e4/10128047/ecfb23e59de0/mbio.00157-23-f005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18e4/10128047/2ba5934a93e4/mbio.00157-23-f006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18e4/10128047/e111610c530b/mbio.00157-23-f007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18e4/10128047/effe6c4dc3fb/mbio.00157-23-f008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18e4/10128047/30265b8cbc88/mbio.00157-23-f009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18e4/10128047/4cd645f29d5e/mbio.00157-23-f001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18e4/10128047/15b5ef6ea7da/mbio.00157-23-f002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18e4/10128047/2390bd496c8c/mbio.00157-23-f003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18e4/10128047/1ee8afb42f93/mbio.00157-23-f004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18e4/10128047/ecfb23e59de0/mbio.00157-23-f005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18e4/10128047/2ba5934a93e4/mbio.00157-23-f006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18e4/10128047/e111610c530b/mbio.00157-23-f007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18e4/10128047/effe6c4dc3fb/mbio.00157-23-f008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18e4/10128047/30265b8cbc88/mbio.00157-23-f009.jpg

相似文献

[1]
Fusarium oxysporum f. sp. Pumilio 1 Regulates Virulence on Watermelon through Interacting with the ARP2/3 Complex and Binding to an A-Rich Motif in the 3' UTR of Diverse Transcripts.

mBio. 2023-4-25

[2]
Palmitoyl Transferase FonPAT2-Catalyzed Palmitoylation of the FonAP-2 Complex Is Essential for Growth, Development, Stress Response, and Virulence in Fusarium oxysporum f. sp. .

Microbiol Spectr. 2023-2-14

[3]
FonTup1 functions in growth, conidiogenesis and pathogenicity of Fusarium oxysporum f. sp. niveum through modulating the expression of the tricarboxylic acid cycle genes.

Microbiol Res. 2023-7

[4]
Ero1-Pdi1 module-catalysed dimerization of a nucleotide sugar transporter, FonNst2, regulates virulence of Fusarium oxysporum on watermelon.

Environ Microbiol. 2022-3

[5]
Degradation of α-Subunits, Doa1 and Doa4, are Critical for Growth, Development, Programmed Cell Death Events, Stress Responses, and Pathogenicity in the Watermelon Fusarium Wilt Fungus f. sp. .

J Agric Food Chem. 2023-8-2

[6]
The SUMOylation pathway regulates the pathogenicity of Fusarium oxysporum f. sp. niveum in watermelon through stabilizing the pH regulator FonPalC via SUMOylation.

Microbiol Res. 2024-4

[7]
The FonSIX6 gene acts as an avirulence effector in the Fusarium oxysporum f. sp. niveum - watermelon pathosystem.

Sci Rep. 2016-6-20

[8]
Marker Development for Differentiation of f. sp. Race 3 from Races 1 and 2.

Int J Mol Sci. 2021-1-15

[9]
CCR4-Not Complex Subunit Not2 Plays Critical Roles in Vegetative Growth, Conidiation and Virulence in Watermelon Fusarium Wilt Pathogen f. sp. .

Front Microbiol. 2016-9-16

[10]
Comparative Transcriptome Analysis Reveals the Biocontrol Mechanism of F21 Against Wilt on Watermelon.

Front Microbiol. 2019-4-3

引用本文的文献

[1]
Gap-free comparative genomics uncover virulence factors for Fusarium wilt of watermelons.

PLoS Pathog. 2025-8-25

[2]
FpFumB Is Required for Basic Biological Processes and Virulence in by Modulating DNA Repair Through Interaction with FpSae2.

Microorganisms. 2025-6-19

[3]
Bacterial extracellular biomolecules-derived multimodal manganese nanoparticles control watermelon Fusarium wilt by dysregulating fusaric acid biosynthesis pathway and precise tuning of rhizosphere metabolome.

J Nanobiotechnology. 2025-6-18

[4]
Watermelon wilt disease: causes, harms, and control measures.

Front Microbiol. 2025-5-7

[5]
The comparative genomic analysis provides insight into the divergent inhibitory activity metabolites in pathogen-driven three Pseudomonas palleroniana strains against primary pathogens of Pseudostellaria heterophylla.

BMC Genomics. 2025-4-2

[6]
The Ubiquitous Wilt-Inducing Pathogen -A Review of Genes Studied with Mutant Analysis.

Pathogens. 2024-9-24

[7]
The Ser/Thr protein kinase FonKin4-poly(ADP-ribose) polymerase FonPARP1 phosphorylation cascade is required for the pathogenicity of watermelon fusarium wilt fungus f. sp. .

Front Microbiol. 2024-4-16

本文引用的文献

[1]
Specific interaction of an RNA-binding protein with the 3'-UTR of its target mRNA is critical to oomycete sexual reproduction.

PLoS Pathog. 2021-10

[2]
Ero1-Pdi1 module-catalysed dimerization of a nucleotide sugar transporter, FonNst2, regulates virulence of Fusarium oxysporum on watermelon.

Environ Microbiol. 2022-3

[3]
The RNA binding protein FgRbp1 regulates specific pre-mRNA splicing via interacting with U2AF23 in Fusarium.

Nat Commun. 2021-5-11

[4]
Functions of PUF Family RNA-Binding Proteins in .

J Microbiol Biotechnol. 2021-5-28

[5]
Dual-specificity protein phosphatase Msg5 controls cell wall integrity and virulence in Fusarium oxysporum.

Fungal Genet Biol. 2021-1

[6]
The root-invading pathogen Fusarium oxysporum targets pattern-triggered immunity using both cytoplasmic and apoplastic effectors.

New Phytol. 2020-9

[7]
Fission Yeast Puf2, a Pumilio and FBF Family RNA-Binding Protein, Links Stress Granules to Processing Bodies.

Mol Cell Biol. 2020-4-13

[8]
A polysaccharide deacetylase from Puccinia striiformis f. sp. tritici is an important pathogenicity gene that suppresses plant immunity.

Plant Biotechnol J. 2020-3-4

[9]
Unique repression domains of Pumilio utilize deadenylation and decapping factors to accelerate destruction of target mRNAs.

Nucleic Acids Res. 2020-2-28

[10]
The phosphatase Ptc6 is involved in virulence and MAPK signalling in Fusarium oxysporum.

Mol Plant Pathol. 2020-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索