Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD, Ciudad de Buenos Aires, Argentina.
Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EGA, Ciudad de Buenos Aires, Argentina.
Metabolomics. 2023 Mar 1;19(3):15. doi: 10.1007/s11306-023-01976-1.
There is still no community consensus regarding strategies for data quality review in liquid chromatography mass spectrometry (LC-MS)-based untargeted metabolomics. Assessing the analytical robustness of data, which is relevant for inter-laboratory comparisons and reproducibility, remains a challenge despite the wide variety of tools available for data processing.
The aim of this study was to provide a model to describe the sources of variation in LC-MS-based untargeted metabolomics measurements, to use it to build a comprehensive curation pipeline, and to provide quality assessment tools for data quality review.
Human serum samples (n=392) were analyzed by ultraperformance liquid chromatography coupled to high-resolution mass spectrometry (UPLC-HRMS) using an untargeted metabolomics approach. The pipeline and tools used to process this dataset were implemented as part of the open source, publicly available TidyMS Python-based package.
The model was applied to understand data curation practices used by the metabolomics community. Sources of variation, which are often overlooked in untargeted metabolomic studies, were identified in the analysis. New tools were used to characterize certain types of variations.
The developed pipeline allowed confirming data robustness by comparing the experimental results with expected values predicted by the model. New quality control practices were introduced to assess the analytical quality of data.
在基于液相色谱-质谱(LC-MS)的非靶向代谢组学中,关于数据质量评估策略仍没有达成共识。尽管有各种各样的数据处理工具,但评估数据的分析稳健性(这对于实验室间比较和重现性很重要)仍然是一个挑战。
本研究旨在提供一个模型来描述基于 LC-MS 的非靶向代谢组学测量中的变异来源,利用它来构建一个全面的策管管道,并提供数据质量评估工具,以进行数据质量评估。
使用非靶向代谢组学方法,通过超高效液相色谱与高分辨率质谱(UPLC-HRMS)对 392 个人类血清样本进行分析。该数据集的处理管道和工具是作为开源的、可公开获取的基于 Python 的 TidyMS 软件包的一部分实现的。
该模型被应用于了解代谢组学社区中使用的数据策管实践。在分析中确定了非靶向代谢组学研究中经常被忽视的变异来源。还使用新工具来描述某些类型的变化。
所开发的管道允许通过将实验结果与模型预测的预期值进行比较来确认数据的稳健性。引入了新的质量控制实践来评估数据的分析质量。