Faculty of Computer Science, 3688Dalhousie University, Halifax, NS, Canada.
Health Informatics J. 2023 Jan-Mar;29(1):14604582221136712. doi: 10.1177/14604582221136712.
Drugs have the potential of causing adverse reactions or side effects and prior knowledge of these reactions can help prevent hospitalizations and premature deaths. Public databases of common adverse drug reactions (ADRs) depend on individual reports from drug manufacturers and health professionals. However, this passive approach to ADR surveillance has been shown to suffer from severe under-reporting. Social media, such as online health forums where patients across the globe willingly share their drug intake experience, is a viable and rich source for detecting unreported ADRs. In this paper, we design an ADR Detection Framework (ADF) using Natural Language Processing techniques to identify ADRs in drug reviews mined from social media. We demonstrate the applicability of ADF in the domain of Diabetes by identifying ADRs associated with diabetes drugs using data extracted from three online patient-based health forums: , , and . Next, we analyze and visualize the ADRs identified and present valuable insights including prevalent and less prevalent ADRs, age and gender differences in ADRs detected, as well as the previously unknown ADRs detected by our framework. Our work could promote active (real-time) ADR surveillance and also advance pharmacovigilance research.
药物有可能引起不良反应或副作用,而预先了解这些反应有助于预防住院和过早死亡。常见药物不良反应(ADR)的公共数据库依赖于药品制造商和医疗保健专业人员的个体报告。然而,这种被动的 ADR 监测方法已被证明存在严重的漏报问题。社交媒体,如全球各地的患者自愿分享他们的药物摄入经验的在线健康论坛,是发现未报告的 ADR 的可行且丰富的来源。在本文中,我们使用自然语言处理技术设计了一个 ADR 检测框架(ADF),以识别从社交媒体中挖掘出的药物评论中的 ADR。我们通过使用从三个在线基于患者的健康论坛( 、 和 )中提取的数据,在糖尿病领域证明了 ADF 的适用性,以识别与糖尿病药物相关的 ADR。接下来,我们分析和可视化了识别出的 ADR,并提出了有价值的见解,包括常见和不太常见的 ADR、检测到的 ADR 中的年龄和性别差异,以及我们的框架检测到的以前未知的 ADR。我们的工作可以促进主动(实时)ADR 监测,并推进药物警戒研究。