Department of Diagnostic Radiology, Tohoku University Graduate School of Medicine.
Tohoku University School of Medicine.
Magn Reson Med Sci. 2024 Apr 1;23(2):161-170. doi: 10.2463/mrms.mp.2022-0091. Epub 2023 Mar 1.
To evaluate the effectiveness of the texture analysis of axillary high-resolution 3D T2-weighted imaging (T2WI) in distinguishing positive and negative lymph node (LN) metastasis in patients with clinically node-negative breast cancer.
Between December 2017 and May 2021, 242 consecutive patients underwent high-resolution 3D T2WI and were classified into the training (n = 160) and validation cohorts (n = 82). We performed manual 3D segmentation of all visible LNs in axillary level I to extract the texture features. As the additional parameters, the number of the LNs and the total volume of all LNs for each case were calculated. The least absolute shrinkage and selection operator algorithm and Random Forest were used to construct the models. We constructed the texture model using the features from the LN with the largest least axis length in the training cohort. Furthermore, we constructed the 3 models combining the selected texture features of the LN with the largest least axis length, the number of LNs, and the total volume of all LNs: texture-number model, texture-volume model, and texture-number-volume model. As a conventional method, we manually measured the largest cortical diameter. Moreover, we performed the receiver operating curve analysis in the validation cohort and compared area under the curves (AUCs) of the models.
The AUCs of the texture model, texture-number model, texture-volume model, texture-number-volume model, and conventional method in the validation cohort were 0.7677, 0.7403, 0.8129, 0.7448, and 0.6851, respectively. The AUC of the texture-volume model was higher than those of other models and conventional method. The sensitivity, specificity, positive predictive value, and negative predictive value of the texture-volume model were 90%, 69%, 49%, and 96%, respectively.
The texture-volume model of high-resolution 3D T2WI effectively distinguished positive and negative LN metastasis for patients with clinically node-negative breast cancer.
评估腋窝高分辨率 3D T2 加权成像(T2WI)纹理分析在鉴别临床淋巴结阴性乳腺癌患者阳性和阴性淋巴结(LN)转移中的有效性。
2017 年 12 月至 2021 年 5 月,连续 242 例患者接受高分辨率 3D T2WI 检查,并分为训练队列(n=160)和验证队列(n=82)。我们对腋窝 I 水平所有可见 LN 进行手动 3D 分割,以提取纹理特征。此外,还计算了每个病例的 LN 数量和所有 LN 的总体积。使用最小绝对收缩和选择算子算法和随机森林构建模型。我们使用训练队列中 LN 的最长轴长构建纹理模型。此外,我们构建了 3 个模型,将具有最长最小轴长的 LN 的选定纹理特征与 LN 数量和所有 LN 的总体积结合起来:纹理-数量模型、纹理-体积模型和纹理-数量-体积模型。作为一种传统方法,我们手动测量了最大皮质直径。此外,我们在验证队列中进行了接受者操作特征曲线分析,并比较了模型的曲线下面积(AUC)。
在验证队列中,纹理模型、纹理-数量模型、纹理-体积模型、纹理-数量-体积模型和传统方法的 AUC 分别为 0.7677、0.7403、0.8129、0.7448 和 0.6851。纹理-体积模型的 AUC 高于其他模型和传统方法。纹理-体积模型的敏感性、特异性、阳性预测值和阴性预测值分别为 90%、69%、49%和 96%。
高分辨率 3D T2WI 的纹理-体积模型能有效鉴别临床淋巴结阴性乳腺癌患者的阳性和阴性 LN 转移。