Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea.
Inorganic Material Lab., Samsung Advanced Institute of Technology (SAIT), Suwon, South Korea.
Nature. 2020 Jun;582(7813):511-514. doi: 10.1038/s41586-020-2375-9. Epub 2020 Jun 24.
Decrease in processing speed due to increased resistance and capacitance delay is a major obstacle for the down-scaling of electronics. Minimizing the dimensions of interconnects (metal wires that connect different electronic components on a chip) is crucial for the miniaturization of devices. Interconnects are isolated from each other by non-conducting (dielectric) layers. So far, research has mostly focused on decreasing the resistance of scaled interconnects because integration of dielectrics using low-temperature deposition processes compatible with complementary metal-oxide-semiconductors is technically challenging. Interconnect isolation materials must have low relative dielectric constants (κ values), serve as diffusion barriers against the migration of metal into semiconductors, and be thermally, chemically and mechanically stable. Specifically, the International Roadmap for Devices and Systems recommends the development of dielectrics with κ values of less than 2 by 2028. Existing low-κ materials (such as silicon oxide derivatives, organic compounds and aerogels) have κ values greater than 2 and poor thermo-mechanical properties. Here we report three-nanometre-thick amorphous boron nitride films with ultralow κ values of 1.78 and 1.16 (close to that of air, κ = 1) at operation frequencies of 100 kilohertz and 1 megahertz, respectively. The films are mechanically and electrically robust, with a breakdown strength of 7.3 megavolts per centimetre, which exceeds requirements. Cross-sectional imaging reveals that amorphous boron nitride prevents the diffusion of cobalt atoms into silicon under very harsh conditions, in contrast to reference barriers. Our results demonstrate that amorphous boron nitride has excellent low-κ dielectric characteristics for high-performance electronics.
由于电阻和电容延迟增加导致的处理速度下降是电子器件缩小尺寸的主要障碍。最小化互连(连接芯片上不同电子元件的金属线)的尺寸对于器件的小型化至关重要。互连通过非导电(介电)层彼此隔离。到目前为止,研究主要集中在降低缩放互连的电阻上,因为使用与互补金属氧化物半导体兼容的低温沉积工艺来集成介电材料在技术上具有挑战性。互连隔离材料必须具有低的相对介电常数(κ 值),作为金属向半导体迁移的扩散阻挡层,并且具有热、化学和机械稳定性。具体来说,国际设备和系统路线图建议在 2028 年之前开发 κ 值小于 2 的介电材料。现有的低 κ 值材料(如氧化硅衍生物、有机化合物和气凝胶)的 κ 值大于 2,且热机械性能较差。在这里,我们报告了厚度为 3 纳米的非晶氮化硼薄膜,在 100 千赫兹和 1 兆赫兹的工作频率下,其 κ 值分别为 1.78 和 1.16(接近空气的 κ 值 1)。这些薄膜具有机械和电气稳定性,击穿强度为 7.3 兆伏特每厘米,超过了要求。横截面成像显示,与参考阻挡层相比,非晶氮化硼防止了钴原子在非常恶劣的条件下扩散到硅中。我们的结果表明,非晶氮化硼具有优异的低 κ 值介电特性,适用于高性能电子设备。