Department of Emergency, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
Front Immunol. 2023 Feb 13;14:1000431. doi: 10.3389/fimmu.2023.1000431. eCollection 2023.
A growing body of evidence indicates that the immune system plays a central role in sepsis. By analyzing immune genes, we sought to establish a robust gene signature and develop a nomogram that could predict mortality in patients with sepsis. Herein, data were extracted from the Gene Expression Omnibus and Biological Information Database of Sepsis (BIDOS) databases. We enrolled 479 participants with complete survival data using the GSE65682 dataset, and grouped them randomly into training (n = 240) and internal validation (n = 239) sets based on a 1:1 proportion. GSE95233 was set as the external validation dataset (n=51). We validated the expression and prognostic value of the immune genes using the BIDOS database. We established a prognostic immune genes signature (including ADRB2, CTSG, CX3CR1, CXCR6, IL4R, LTB, and TMSB10) LASSO and Cox regression analyses in the training set. Based on the training and validation sets, the Receiver Operating Characteristic curves and Kaplan-Meier analysis revealed that the immune risk signature has good predictive power in predicting sepsis mortality risk. The external validation cases also showed that mortality rates in the high-risk group were higher than those in the low-risk group. Subsequently, a nomogram integrating the combined immune risk score and other clinical features was developed. Finally, a web-based calculator was built to facilitate a convenient clinical application of the nomogram. In summary, the signature based on the immune gene holds potential as a novel prognostic predictor for sepsis.
越来越多的证据表明免疫系统在脓毒症中起着核心作用。通过分析免疫基因,我们试图建立一个稳健的基因特征,并开发一个列线图,可以预测脓毒症患者的死亡率。在这里,数据从基因表达综合数据库和脓毒症生物信息数据库(BIDOS)中提取。我们使用 GSE65682 数据集纳入了 479 名具有完整生存数据的参与者,并根据 1:1 的比例将他们随机分为训练集(n = 240)和内部验证集(n = 239)。GSE95233 被设置为外部验证数据集(n=51)。我们使用 BIDOS 数据库验证了免疫基因的表达和预后价值。我们在训练集中使用 LASSO 和 Cox 回归分析建立了一个预后免疫基因特征(包括 ADRB2、CTSG、CX3CR1、CXCR6、IL4R、LTB 和 TMSB10)。基于训练集和验证集,接收器工作特征曲线和 Kaplan-Meier 分析表明,免疫风险特征具有良好的预测脓毒症死亡风险的能力。外部验证病例也表明,高危组的死亡率高于低危组。随后,开发了一个整合联合免疫风险评分和其他临床特征的列线图。最后,构建了一个基于网络的计算器,以便于列线图的临床应用。总之,基于免疫基因的特征具有作为脓毒症新型预后预测因子的潜力。